IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i24p17058-d1007949.html
   My bibliography  Save this article

AMF Inoculum Enhances Crop Yields of Zea mays L. ‘Chenghai No. 618’ and Glycine max L. ‘Zhonghuang No. 17’ without Disturbing Native Fugal Communities in Coal Mine Dump

Author

Listed:
  • Kun Wang

    (State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology (Beijing), Beijing 100083, China
    These authors contributed equally to this work.)

  • Yinli Bi

    (State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology (Beijing), Beijing 100083, China
    Institute of Ecological Environment Restoration in Mine Areas of West China, Xi’an University of Science and Technology, Xi’an 710054, China
    These authors contributed equally to this work.)

  • Jiayu Zhang

    (State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology (Beijing), Beijing 100083, China)

  • Shaopeng Ma

    (State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology (Beijing), Beijing 100083, China)

Abstract

For the agricultural development of dumps, increase in land use efficiency and protection of food security, to verify the safety, efficacy and sustainability of field-applied arbuscular mycorrhizal fungi (AMF) inoculum, and to exclude the risk of potential biological invasion, in this study, we determined the effect of AMF inoculation and intercropping patterns (maize–soybean) on the temporal dynamics of soil parameters, native AMF communities and crop yields. AMF communities were analyzed using Illumina MiSeq. A total of 448 AMF operational taxonomic units (OTUs) belonging to six genera and nine families were identified. AMF inoculation treatment significantly improved the yield of intercropping maize and increased the content of available phosphorus. AMF diversity was significantly influenced by cropping pattern and growth stage, but not by the inoculation treatment. Inoculation altered the AMF community composition in the early growth stage and facilitated a more complex AMF network in the early and late growth stages. These results indicate that AMF inoculation affects native AMF only in the early stage, and its impact on yield may be the consequence of cumulative effects due to the advantages of plant growth and nutrient uptake in the early stage.

Suggested Citation

  • Kun Wang & Yinli Bi & Jiayu Zhang & Shaopeng Ma, 2022. "AMF Inoculum Enhances Crop Yields of Zea mays L. ‘Chenghai No. 618’ and Glycine max L. ‘Zhonghuang No. 17’ without Disturbing Native Fugal Communities in Coal Mine Dump," IJERPH, MDPI, vol. 19(24), pages 1-17, December.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:24:p:17058-:d:1007949
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/24/17058/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/24/17058/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gourav Sharma & Swati Shrestha & Sudip Kunwar & Te-Ming Tseng, 2021. "Crop Diversification for Improved Weed Management: A Review," Agriculture, MDPI, vol. 11(5), pages 1-17, May.
    2. Milan Panth & Samuel C. Hassler & Fulya Baysal-Gurel, 2020. "Methods for Management of Soilborne Diseases in Crop Production," Agriculture, MDPI, vol. 10(1), pages 1-21, January.
    3. Martignoni, Maria M. & Garnier, Jimmy & Hart, Miranda M. & Tyson, Rebecca C., 2020. "Investigating the impact of the mycorrhizal inoculum on the resident fungal community and on plant growth," Ecological Modelling, Elsevier, vol. 438(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Theodrose Sisay & Kindie Tesfaye & Mengistu Ketema & Nigussie Dechassa & Mezegebu Getnet, 2023. "Climate-Smart Agriculture Technologies and Determinants of Farmers’ Adoption Decisions in the Great Rift Valley of Ethiopia," Sustainability, MDPI, vol. 15(4), pages 1-12, February.
    2. Ibirénoyé Romaric Sodjahin & Fabienne Femenia & Obafemi Philippe Koutchade & A. Carpentier, 2022. "On the economic value of the agronomic effects of crop diversification for farmers: estimation based on farm cost accounting data [Valeur économique des effets agronomiques de la diversification de," Working Papers hal-03639951, HAL.
    3. Kumari, V. Visha & Balloli, S.S. & Ramana, D.B.V. & Kumar, Manoranjan & Maruthi, V. & Prabhakar, M. & Osman, M. & Indoria, A.K. & Manjunath, M. & Chary, G. Ravindra & Gopinath, K.A. & Venkatesh, G. & , 2023. "Crop and livestock productivity, soil health improvement and insect dynamics: Impact of different fodder-based cropping systems in a rainfed region of India," Agricultural Systems, Elsevier, vol. 208(C).
    4. Sodjahin, Romaric & Carpentier, Alain & Koutchade, Obafèmi Philippe & Femenia, Fabienne, 2022. "On the economic value of the agronomic effects of crop diversification for farmers: Estimation based on farm cost accounting data," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322295, Agricultural and Applied Economics Association.
    5. Aušra Marcinkevičienė & Arūnas Čmukas & Rimantas Velička & Robertas Kosteckas & Lina Skinulienė, 2023. "Comparative Analysis of Undersown Cover Crops and Bio-Preparations on Weed Spread and Organically Grown Spring Oilseed Rape Yield," Sustainability, MDPI, vol. 15(18), pages 1-18, September.
    6. Colette de Villiers & Cilence Munghemezulu & Zinhle Mashaba-Munghemezulu & George J. Chirima & Solomon G. Tesfamichael, 2023. "Weed Detection in Rainfed Maize Crops Using UAV and PlanetScope Imagery," Sustainability, MDPI, vol. 15(18), pages 1-22, September.
    7. Gorkem Sulu & Ilknur Polat & Hatice Filiz Boyaci & Aytul Yildirim & Emine Gümrükcü, 2022. "Screening and validation of three molecular markers for disease resistance in eggplant," Czech Journal of Genetics and Plant Breeding, Czech Academy of Agricultural Sciences, vol. 58(2), pages 83-92.
    8. Milan Panth & Anthony Witcher & Fulya Baysal-Gurel, 2021. "Response of Cover Crops to Phytopythium vexans , Phytophthora nicotianae, and Rhizoctonia solani , Major Soilborne Pathogens of Woody Ornamentals," Agriculture, MDPI, vol. 11(8), pages 1-15, August.
    9. Dhuha Sulaiman Salim Al-Daghari & Abdullah Mohammed Al-Sadi & Issa Hashil Al-Mahmooli & Rhonda Janke & Rethinasamy Velazhahan, 2023. "Biological Control Efficacy of Indigenous Antagonistic Bacteria Isolated from the Rhizosphere of Cabbage Grown in Biofumigated Soil against Pythium aphanidermatum Damping-Off of Cucumber," Agriculture, MDPI, vol. 13(3), pages 1-20, March.
    10. Silvia Traversari & Sonia Cacini & Angelica Galieni & Beatrice Nesi & Nicola Nicastro & Catello Pane, 2021. "Precision Agriculture Digital Technologies for Sustainable Fungal Disease Management of Ornamental Plants," Sustainability, MDPI, vol. 13(7), pages 1-22, March.
    11. Anissa Poleatewich & Isobel Michaud & Brian Jackson & Matthew Krause & Liza DeGenring, 2022. "The Effect of Peat Moss Amended with Three Engineered Wood Substrate Components on Suppression of Damping-Off Caused by Rhizoctonia solani," Agriculture, MDPI, vol. 12(12), pages 1-15, December.
    12. Pervin Akter & Arju Farhana & A.M. Abu Ahmed, 2022. "Allelopathic Response Of Root Exudates Of Five Common Weeds In Yard Long Bean (Vigna Unguiculata Subsp. Sesquipedalis L. Verd] And Maize (Zea Mays L.)," Acta Scientifica Malaysia (ASM), Zibeline International Publishing, vol. 6(1), pages 01-05, January.
    13. Ioannis Gazoulis & Panagiotis Kanatas & Nikolaos Antonopoulos & Alexandros Tataridas & Ilias Travlos, 2022. "Νarrow Row Spacing and Cover Crops to Suppress Weeds and Improve Sulla ( Hedysarum coronarium L.) Biomass Production," Energies, MDPI, vol. 15(19), pages 1-22, October.
    14. Silvio Franco & Barbara Pancino & Angelo Martella & Tommaso De Gregorio, 2022. "Assessing the Presence of a Monoculture: From Definition to Quantification," Agriculture, MDPI, vol. 12(9), pages 1-10, September.
    15. Domingo Cesar Carrascal-Hernández & Edwin Flórez-López & Yeimmy Peralta-Ruiz & Clemencia Chaves-López & Carlos David Grande-Tovar, 2022. "Eco-Friendly Biocontrol Strategies of Alternaria Phytopathogen Fungus: A Focus on Gene-Editing Techniques," Agriculture, MDPI, vol. 12(10), pages 1-23, October.
    16. Sabine Andert & Andrea Ziesemer, 2022. "Analysing Farmers’ Herbicide Use Pattern to Estimate the Magnitude and Field-Economic Value of Crop Diversification," Agriculture, MDPI, vol. 12(5), pages 1-11, May.
    17. Erhan Erdel & Uğur Şimşek & Tuba Genç Kesimci, 2023. "Effects of Fungi on Soil Organic Carbon and Soil Enzyme Activity under Agricultural and Pasture Land of Eastern Türkiye," Sustainability, MDPI, vol. 15(3), pages 1-12, January.
    18. Sebastian Soppelsa & Luisa Maria Manici & Francesco Caputo & Massimo Zago & Markus Kelderer, 2021. "Locally Available Organic Waste for Counteracting Strawberry Decline in a Mountain Specialized Cropping Area," Sustainability, MDPI, vol. 13(7), pages 1-15, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:24:p:17058-:d:1007949. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.