IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i18p13416-d1235051.html
   My bibliography  Save this article

Weed Detection in Rainfed Maize Crops Using UAV and PlanetScope Imagery

Author

Listed:
  • Colette de Villiers

    (Department of Geography, Geoinformatics and Meteorology, University of Pretoria, Pretoria 0028, South Africa
    Agricultural Research Council—Natural Resources and Engineering, Private Bag X79, Pretoria 0001, South Africa)

  • Cilence Munghemezulu

    (Agricultural Research Council—Natural Resources and Engineering, Private Bag X79, Pretoria 0001, South Africa)

  • Zinhle Mashaba-Munghemezulu

    (Agricultural Research Council—Natural Resources and Engineering, Private Bag X79, Pretoria 0001, South Africa)

  • George J. Chirima

    (Department of Geography, Geoinformatics and Meteorology, University of Pretoria, Pretoria 0028, South Africa
    Agricultural Research Council—Natural Resources and Engineering, Private Bag X79, Pretoria 0001, South Africa)

  • Solomon G. Tesfamichael

    (Department of Geography, Environmental Management and Energy Studies, University of Johannesburg, Johannesburg 2006, South Africa)

Abstract

Weed invasion of crop fields, such as maize, is a major threat leading to yield reductions or crop right-offs for smallholder farming, especially in developing countries. A synoptic view and timeous detection of weed invasions can save the crop. The sustainable development goals (SDGs) have identified food security as a major focus point. The objectives of this study are to: (1) assess the precision of mapping maize-weed infestations using multi-temporal, unmanned aerial vehicle (UAV), and PlanetScope data by utilizing machine learning algorithms, and (2) determine the optimal timing during the maize growing season for effective weed detection. UAV and PlanetScope satellite imagery were used to map weeds using machine learning algorithms—random forest (RF) and support vector machine (SVM). The input features included spectral bands, color space channels, and various vegetation indices derived from the datasets. Furthermore, principal component analysis (PCA) was used to produce principal components (PCs) that served as inputs for the classification. In this study, eight experiments are conducted, four experiments each for UAV and PlanetScope datasets spanning four months. Experiment 1 utilized all bands with the RF classifier, experiment 2 used all bands with SVM, experiment 3 employed PCs with RF, and experiment 4 utilized PCs with SVM. The results reveal that PlanetScope achieves accuracies below 49% in all four experiments. The best overall performance was observed for experiment 1 using the UAV based on the highest mean accuracy score (>0.88), which included the overall accuracy, precision, recall, F1 score, and cross-validation scores. The findings highlight the critical role of spectral information, color spaces, and vegetation indices in accurately identifying weeds during the mid-to-late stages of maize crop growth, with the higher spatial resolution of UAV exhibiting a higher precision in the classification accuracy than the PlanetScope imagery. The most optimal stage for weed detection was found to be during the reproductive stage of the crop cycle based on the best F1 scores being indicated for the maize and weeds class. This study provides pivotal information about the spatial distribution of weeds in maize fields and this information is essential for sustainable weed management in agricultural activities.

Suggested Citation

  • Colette de Villiers & Cilence Munghemezulu & Zinhle Mashaba-Munghemezulu & George J. Chirima & Solomon G. Tesfamichael, 2023. "Weed Detection in Rainfed Maize Crops Using UAV and PlanetScope Imagery," Sustainability, MDPI, vol. 15(18), pages 1-22, September.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:13416-:d:1235051
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/18/13416/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/18/13416/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gourav Sharma & Swati Shrestha & Sudip Kunwar & Te-Ming Tseng, 2021. "Crop Diversification for Improved Weed Management: A Review," Agriculture, MDPI, vol. 11(5), pages 1-17, May.
    2. Gokool, S. & Mahomed, M. & Kunz, R. & Clulow, A. & Sibanda, M. & Naiken, V. & Chetty, K. & Mabhaudhi, Tafadzwanashe, 2023. "Crop monitoring in smallholder farms using unmanned aerial vehicles to facilitate precision agriculture practices: a scoping review and bibliometric analysis," Papers published in Journals (Open Access), International Water Management Institute, pages 1-15(4):355.
    3. Shaeden Gokool & Maqsooda Mahomed & Richard Kunz & Alistair Clulow & Mbulisi Sibanda & Vivek Naiken & Kershani Chetty & Tafadzwanashe Mabhaudhi, 2023. "Crop Monitoring in Smallholder Farms Using Unmanned Aerial Vehicles to Facilitate Precision Agriculture Practices: A Scoping Review and Bibliometric Analysis," Sustainability, MDPI, vol. 15(4), pages 1-18, February.
    4. Haotian Pei & Youqiang Sun & He Huang & Wei Zhang & Jiajia Sheng & Zhiying Zhang, 2022. "Weed Detection in Maize Fields by UAV Images Based on Crop Row Preprocessing and Improved YOLOv4," Agriculture, MDPI, vol. 12(7), pages 1-18, July.
    5. Hudson C. Laizer & Musa N. Chacha & Patrick A. Ndakidemi, 2019. "Farmers’ Knowledge, Perceptions and Practices in Managing Weeds and Insect Pests of Common Bean in Northern Tanzania," Sustainability, MDPI, vol. 11(15), pages 1-11, July.
    6. Brewer, K. & Clulow, A. & Sibanda, M. & Gokool, S. & Naiken, V. & Mabhaudhi, Tafadzwanashe, 2022. "Predicting the chlorophyll content of maize over phenotyping as a proxy for crop health in smallholder farming systems," Papers published in Journals (Open Access), International Water Management Institute, pages 1-14(3):518.
    7. Gérard Biau & Erwan Scornet, 2016. "A random forest guided tour," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(2), pages 197-227, June.
    8. Mfanufikile Mabuza & Jorine T. Ndoro, 2023. "Borich’s Needs Model Analysis of Smallholder Farmers’ Competence in Irrigation Water Management: Case Study of Nkomazi Local Municipality, Mpumalanga Province in South Africa," Sustainability, MDPI, vol. 15(6), pages 1-17, March.
    9. Gérard Biau & Erwan Scornet, 2016. "Rejoinder on: A random forest guided tour," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(2), pages 264-268, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hou, Lei & Elsworth, Derek & Zhang, Fengshou & Wang, Zhiyuan & Zhang, Jianbo, 2023. "Evaluation of proppant injection based on a data-driven approach integrating numerical and ensemble learning models," Energy, Elsevier, vol. 264(C).
    2. Ma, Zhikai & Huo, Qian & Wang, Wei & Zhang, Tao, 2023. "Voltage-temperature aware thermal runaway alarming framework for electric vehicles via deep learning with attention mechanism in time-frequency domain," Energy, Elsevier, vol. 278(C).
    3. Patrick Krennmair & Timo Schmid, 2022. "Flexible domain prediction using mixed effects random forests," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1865-1894, November.
    4. Manuel J. García Rodríguez & Vicente Rodríguez Montequín & Francisco Ortega Fernández & Joaquín M. Villanueva Balsera, 2019. "Public Procurement Announcements in Spain: Regulations, Data Analysis, and Award Price Estimator Using Machine Learning," Complexity, Hindawi, vol. 2019, pages 1-20, November.
    5. Sachin Kumar & Zairu Nisha & Jagvinder Singh & Anuj Kumar Sharma, 2022. "Sensor network driven novel hybrid model based on feature selection and SVR to predict indoor temperature for energy consumption optimisation in smart buildings," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(6), pages 3048-3061, December.
    6. Escribano, Álvaro & Wang, Dandan, 2021. "Mixed random forest, cointegration, and forecasting gasoline prices," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1442-1462.
    7. Yigit Aydede & Jan Ditzen, 2022. "Identifying the regional drivers of influenza-like illness in Nova Scotia with dominance analysis," Papers 2212.06684, arXiv.org.
    8. Siyoon Kwon & Hyoseob Noh & Il Won Seo & Sung Hyun Jung & Donghae Baek, 2021. "Identification Framework of Contaminant Spill in Rivers Using Machine Learning with Breakthrough Curve Analysis," IJERPH, MDPI, vol. 18(3), pages 1-26, January.
    9. Yan, Ran & Wang, Shuaian & Du, Yuquan, 2020. "Development of a two-stage ship fuel consumption prediction and reduction model for a dry bulk ship," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 138(C).
    10. Yi Cao & Xue Li, 2022. "Multi-Model Attention Fusion Multilayer Perceptron Prediction Method for Subway OD Passenger Flow under COVID-19," Sustainability, MDPI, vol. 14(21), pages 1-16, November.
    11. Filmer,Deon P. & Nahata,Vatsal & Sabarwal,Shwetlena, 2021. "Preparation, Practice, and Beliefs : A Machine Learning Approach to Understanding Teacher Effectiveness," Policy Research Working Paper Series 9847, The World Bank.
    12. Daniel Boller & Michael Lechner & Gabriel Okasa, 2021. "The Effect of Sport in Online Dating: Evidence from Causal Machine Learning," Papers 2104.04601, arXiv.org.
    13. Jorge Antunes & Peter Wanke & Thiago Fonseca & Yong Tan, 2023. "Do ESG Risk Scores Influence Financial Distress? Evidence from a Dynamic NDEA Approach," Sustainability, MDPI, vol. 15(9), pages 1-32, May.
    14. Lyudmyla Kirichenko & Tamara Radivilova & Vitalii Bulakh, 2018. "Machine Learning in Classification Time Series with Fractal Properties," Data, MDPI, vol. 4(1), pages 1-13, December.
    15. Ivan Brandić & Lato Pezo & Nikola Bilandžija & Anamarija Peter & Jona Šurić & Neven Voća, 2023. "Comparison of Different Machine Learning Models for Modelling the Higher Heating Value of Biomass," Mathematics, MDPI, vol. 11(9), pages 1-14, April.
    16. José A. Ferreira, 2022. "Models under which random forests perform badly; consequences for applications," Computational Statistics, Springer, vol. 37(4), pages 1839-1854, September.
    17. Villacis, Alexis & Badruddoza, Syed & Mayorga, Joaquin & Mishra, Ashok K., 2022. "Using Machine Learning to Test the Consistency of Food Insecurity Measures," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322472, Agricultural and Applied Economics Association.
    18. Valeria D’Amato & Rita D’Ecclesia & Susanna Levantesi, 2022. "ESG score prediction through random forest algorithm," Computational Management Science, Springer, vol. 19(2), pages 347-373, June.
    19. Raman Pall & Yvan Gauthier & Sofia Auer & Walid Mowaswes, 2023. "Predicting drug shortages using pharmacy data and machine learning," Health Care Management Science, Springer, vol. 26(3), pages 395-411, September.
    20. Nametso Matomela & Tianxin Li & Peng Zhang & Harrison Odion Ikhumhen & Namir Domingos Raimundo Lopes, 2023. "Role of Landscape and Land-Use Transformation on Nonpoint Source Pollution and Runoff Distribution in the Dongsheng Basin, China," Sustainability, MDPI, vol. 15(10), pages 1-19, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:13416-:d:1235051. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.