IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i22p15407-d979668.html
   My bibliography  Save this article

Urbanization Impact on Regional Sustainable Development: Through the Lens of Urban-Rural Resilience

Author

Listed:
  • Chenchen Shi

    (School of Urban Economics and Public Administration, Capital University of Economics and Business, Beijing 100070, China
    Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    Beijing Key Laboratory of Megaregions Sustainable Development Modeling, Capital University of Economics and Business, Beijing 100070, China)

  • Xiaoping Zhu

    (College of Agronomy and Biotechnology, Hebei Normal University of Science & Technology, Qinhuangdao 066104, China)

  • Haowei Wu

    (Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    University of Chinese Academy of Sciences, Beijing 100049, China
    School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China)

  • Zhihui Li

    (Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract

The urban–rural system is an economically, socially, and environmentally interlinked space, which requires the integration of industry, space, and population. To achieve sustainable and coordinated development between urban and rural systems, dynamic land use change within the urban–rural system and the ecological and social consequences need to be clarified. This study uses system resilience to evaluate such an impact and explores the impact of land use change, especially land conversion induced by urbanization on regional development through the lens of urban–rural resilience. The empirical case is based on the Beijing-Tianjin-Hebei Urban Agglomeration (BTHUA) in China from 2000 to 2020 when there was rapid urbanization in this region. The results show that along with urbanization in the BTHUA, urban–rural resilience is high in urban core areas and low in peripheral areas. From the urban core to the rural outskirts, there is a general trend that comprehensive resilience decreases with decreased social resilience and increased ecological resilience in this region. Specifically, at the city level, comprehensive resilience decreases sharply from the urban center to its 3–5 km buffer zone and then remains relatively stable in the rural regions. A similar trend goes for social resilience at the city level, while ecological resilience increases sharply from the urban center to its 1–3 km buffer zone, and then remains relatively stable in the rural regions in this region, except for cities in the west and south of Hebei. This study contributes to the conceptualization and measurement of urban–rural resilience in the urban–rural system with empirical findings revealing the impact of rapid urbanization on urban–rural resilience over the last twenty years in the BTHUA in China. In addition, the spatial heterogeneity results could be used for policy reference to make targeted resilience strategies in the study region.

Suggested Citation

  • Chenchen Shi & Xiaoping Zhu & Haowei Wu & Zhihui Li, 2022. "Urbanization Impact on Regional Sustainable Development: Through the Lens of Urban-Rural Resilience," IJERPH, MDPI, vol. 19(22), pages 1-17, November.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:22:p:15407-:d:979668
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/22/15407/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/22/15407/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Deng, Xiangzheng & Huang, Jikun & Rozelle, Scott & Uchida, Emi, 2008. "Growth, population and industrialization, and urban land expansion of China," Journal of Urban Economics, Elsevier, vol. 63(1), pages 96-115, January.
    2. Chenchen Shi & Xiaoping Zhu & Haowei Wu & Zhihui Li, 2022. "Assessment of Urban Ecological Resilience and Its Influencing Factors: A Case Study of the Beijing-Tianjin-Hebei Urban Agglomeration of China," Land, MDPI, vol. 11(6), pages 1-14, June.
    3. Yu Chen & Xuyang Su & Qian Zhou, 2021. "Study on the Spatiotemporal Evolution and Influencing Factors of Urban Resilience in the Yellow River Basin," IJERPH, MDPI, vol. 18(19), pages 1-20, September.
    4. Elias Giannakis & Adriana Bruggeman, 2020. "Regional disparities in economic resilience in the European Union across the urban–rural divide," Regional Studies, Taylor & Francis Journals, vol. 54(9), pages 1200-1213, September.
    5. Xinli Liu & Sijia Li & Xian Xu & Jingshu Luo, 2021. "Integrated natural disasters urban resilience evaluation: the case of China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(3), pages 2105-2122, July.
    6. Fei Ma & Zuohang Wang & Qipeng Sun & Kum Fai Yuen & Yanxia Zhang & Huifeng Xue & Shumei Zhao, 2020. "Spatial–Temporal Evolution of Urban Resilience and Its Influencing Factors: Evidence from the Guanzhong Plain Urban Agglomeration," Sustainability, MDPI, vol. 12(7), pages 1-24, March.
    7. Zhongqiang Bai & Juanle Wang & Mingming Wang & Mengxu Gao & Jiulin Sun, 2018. "Accuracy Assessment of Multi-Source Gridded Population Distribution Datasets in China," Sustainability, MDPI, vol. 10(5), pages 1-15, April.
    8. Andrea E Gaughan & Forrest R Stevens & Catherine Linard & Peng Jia & Andrew J Tatem, 2013. "High Resolution Population Distribution Maps for Southeast Asia in 2010 and 2015," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-11, February.
    9. Ellen Banzhaf & Sally Anderson & Gwendoline Grandin & Richard Hardiman & Anne Jensen & Laurence Jones & Julius Knopp & Gregor Levin & Duncan Russel & Wanben Wu & Jun Yang & Marianne Zandersen, 2022. "Urban-Rural Dependencies and Opportunities to Design Nature-Based Solutions for Resilience in Europe and China," Land, MDPI, vol. 11(4), pages 1-25, March.
    10. Ma, Wenqiu & Jiang, Guanghui & Chen, Yunhao & Qu, Yanbo & Zhou, Tao & Li, Wenqing, 2020. "How feasible is regional integration for reconciling land use conflicts across the urban–rural interface? Evidence from Beijing–Tianjin–Hebei metropolitan region in China," Land Use Policy, Elsevier, vol. 92(C).
    11. Hallegatte, Stephane, 2014. "Economic resilience: definition and measurement," Policy Research Working Paper Series 6852, The World Bank.
    12. Hugo Herrera & Birgit Kopainsky, 2020. "Using system dynamics to support a participatory assessment of resilience," Environment Systems and Decisions, Springer, vol. 40(3), pages 342-355, September.
    13. Tao Shi & Yurong Qiao & Qian Zhou, 2021. "Spatiotemporal evolution and spatial relevance of urban resilience: Evidence from cities of China," Growth and Change, Wiley Blackwell, vol. 52(4), pages 2364-2390, December.
    14. Datola, Giulia & Bottero, Marta & De Angelis, Elena & Romagnoli, Francesco, 2022. "Operationalising resilience: A methodological framework for assessing urban resilience through System Dynamics Model," Ecological Modelling, Elsevier, vol. 465(C).
    15. Qingmu Su & Hsueh-Sheng Chang & Shin-En Pai, 2022. "A Comparative Study of the Resilience of Urban and Rural Areas under Climate Change," IJERPH, MDPI, vol. 19(15), pages 1-14, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Patricio Pacheco & Eduardo Mera & Voltaire Fuentes, 2023. "Intensive Urbanization, Urban Meteorology and Air Pollutants: Effects on the Temperature of a City in a Basin Geography," IJERPH, MDPI, vol. 20(5), pages 1-20, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liangang Li & Pingyu Zhang & Chengxin Wang, 2022. "What Affects the Economic Resilience of China’s Yellow River Basin Amid Economic Crisis—From the Perspective of Spatial Heterogeneity," IJERPH, MDPI, vol. 19(15), pages 1-20, July.
    2. Chenchen Shi & Naliang Guo & Xiaoping Zhu & Feng Wu, 2022. "Assessing Urban Resilience from the Perspective of Scaling Law: Evidence from Chinese Cities," Land, MDPI, vol. 11(10), pages 1-23, October.
    3. Jie Huang & Zimin Sun & Minzhe Du, 2022. "Differences and Drivers of Urban Resilience in Eight Major Urban Agglomerations: Evidence from China," Land, MDPI, vol. 11(9), pages 1-18, September.
    4. Yi Xiao & Jialong Zhong & Jue Wang & Lanyue Zhang & Xinmeng Qian & Wei Liu & Huan Huang, 2023. "Exploring the Coupling Coordination Relationship of Urban Resilience System in Ecologically Fragile Areas: Case Study of the Loess Plateau in China," Land, MDPI, vol. 12(11), pages 1-21, October.
    5. Mei Yang & Mengyun Jiao & Jinyu Zhang, 2022. "Research on Urban Resilience and Influencing Factors of Chengdu-Chongqing Economic Circle," Sustainability, MDPI, vol. 14(17), pages 1-19, August.
    6. Damilola Giwa-Daramola & Harvey S. James, 2023. "COVID-19 and Microeconomic Resilience in Sub-Saharan Africa: A Study on Ethiopian and Nigerian Households," Sustainability, MDPI, vol. 15(9), pages 1-25, May.
    7. Shen, Liyin & Cheng, Guangyu & Du, Xiaoyun & Meng, Conghui & Ren, Yitian & Wang, Jinhuan, 2022. "Can urban agglomeration bring “1 + 1 > 2Effect”? A perspective of land resource carrying capacity," Land Use Policy, Elsevier, vol. 117(C).
    8. Tingting Yang & Lin Wang, 2024. "Did Urban Resilience Improve during 2005–2021? Evidence from 31 Chinese Provinces," Land, MDPI, vol. 13(3), pages 1-22, March.
    9. Changyuan He & Qiang Zhang & Gang Wang & Vijay P. Singh & Tiantian Li & Shuai Cui, 2023. "Evaluation of Urban Resilience of China’s Three Major Urban Agglomerations Using Complex Adaptive System Theory," Sustainability, MDPI, vol. 15(19), pages 1-16, October.
    10. Chenchen Shi & Xiaoping Zhu & Haowei Wu & Zhihui Li, 2022. "Assessment of Urban Ecological Resilience and Its Influencing Factors: A Case Study of the Beijing-Tianjin-Hebei Urban Agglomeration of China," Land, MDPI, vol. 11(6), pages 1-14, June.
    11. Huali Pan & Yuxin Yang & Wei Zhang & Mingzhi Xu, 2024. "Research on Coupling Coordination of China’s Urban Resilience and Tourism Economy—Taking Yangtze River Delta City Cluster as an Example," Sustainability, MDPI, vol. 16(3), pages 1-27, February.
    12. Ke Liu & Shiwen Yang & Qian Zhou & Yurong Qiao, 2021. "Spatiotemporal Evolution and Spatial Network Analysis of the Urban Ecological Carrying Capacity in the Yellow River Basin," IJERPH, MDPI, vol. 19(1), pages 1-25, December.
    13. Ying Zhou & Qihao Su & Yulian Li & Xingwei Li, 2022. "Spatial-Temporal Characteristics of Multi-Hazard Resilience in Ecologically Fragile Areas of Southwest China: A Case Study in Aba," IJERPH, MDPI, vol. 19(19), pages 1-21, September.
    14. Vinko Muštra & Blanka Šimundić & Zvonimir Kuliš, 2020. "Does innovation matter for regional labour resilience? The case of EU regions," Regional Science Policy & Practice, Wiley Blackwell, vol. 12(5), pages 955-970, October.
    15. Aaron B. Gertz & James B. Davies & Samantha L. Black, 2019. "A CGE Framework for Modeling the Economics of Flooding and Recovery in a Major Urban Area," Risk Analysis, John Wiley & Sons, vol. 39(6), pages 1314-1341, June.
    16. Haiwen Zhou, 2013. "The Choice of Technology and Rural-Urban Migration in Economic Development," Frontiers of Economics in China-Selected Publications from Chinese Universities, Higher Education Press, vol. 8(3), pages 337-361, September.
    17. Jiaxing Cui & Xuesong Kong & Jing Chen & Jianwei Sun & Yuanyuan Zhu, 2021. "Spatially Explicit Evaluation and Driving Factor Identification of Land Use Conflict in Yangtze River Economic Belt," Land, MDPI, vol. 10(1), pages 1-24, January.
    18. Jidong Wu & Ying Li & Ning Li & Peijun Shi, 2018. "Development of an Asset Value Map for Disaster Risk Assessment in China by Spatial Disaggregation Using Ancillary Remote Sensing Data," Risk Analysis, John Wiley & Sons, vol. 38(1), pages 17-30, January.
    19. Ortuño-Padilla, Armando & Fernández-Aracil, Patricia, 2013. "Impact of fuel price on the development of the urban sprawl in Spain," Journal of Transport Geography, Elsevier, vol. 33(C), pages 180-187.
    20. Dai, Jiangyu & Wu, Shiqiang & Han, Guoyi & Weinberg, Josh & Xie, Xinghua & Wu, Xiufeng & Song, Xingqiang & Jia, Benyou & Xue, Wanyun & Yang, Qianqian, 2018. "Water-energy nexus: A review of methods and tools for macro-assessment," Applied Energy, Elsevier, vol. 210(C), pages 393-408.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:22:p:15407-:d:979668. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.