IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i16p10380-d893341.html
   My bibliography  Save this article

Spatio-Temporal Characteristics of Water Ecological Footprint and Countermeasures for Water Sustainability in Japan

Author

Listed:
  • Yin Su

    (College of Eco-Environmental Engineering, Guizhou Minzu University, Huaxi District, Guiyang 550025, China
    Faculty of Environmental Engineering, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu-ku, Kitakyushu 808-0135, Japan)

  • Qifang Zheng

    (College of Eco-Environmental Engineering, Guizhou Minzu University, Huaxi District, Guiyang 550025, China)

  • Shenghai Liao

    (College of Eco-Environmental Engineering, Guizhou Minzu University, Huaxi District, Guiyang 550025, China)

Abstract

Water-related problems are mostly caused by water imbalances between supply and demand. This study adopts the ecological footprint method to conduct an empirical study on the sustainable utilization of water resources in Japan. According to the basic principles and calculation methods of water ecological footprint (WEF), the characteristics of Japan’s water ecological footprint were investigated from the time and space dimensions, and a comparative analysis was made with the water ecological footprint of China. The results show that: from 1980 to 2020, the total water ecological footprint in Japan showed a downward trend in both the traditional account and pollutant account, and its spatial pattern was characterized by the relation that the higher the urbanization rate, the larger the water ecological footprint. In terms of water ecological footprint efficiency, Japan’s agricultural water ecological footprint efficiency was the lowest, and the domestic water ecological footprint efficiency was the highest. The water resources policies and measures that Japan and other developing countries should take to ensure the sustainability of water resources were analyzed separately.

Suggested Citation

  • Yin Su & Qifang Zheng & Shenghai Liao, 2022. "Spatio-Temporal Characteristics of Water Ecological Footprint and Countermeasures for Water Sustainability in Japan," IJERPH, MDPI, vol. 19(16), pages 1-16, August.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:16:p:10380-:d:893341
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/16/10380/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/16/10380/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Changsheng Jin & Yuxi Liu & Zhongwu Li & Rizhao Gong & Mei Huang & Jiajun Wen, 2022. "Ecological consequences of China’s regional development strategy: evidence from water ecological footprint in Yangtze River Economic Belt," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(12), pages 13732-13747, December.
    2. Wackernagel, Mathis & Rees, William E., 1997. "Perceptual and structural barriers to investing in natural capital: Economics from an ecological footprint perspective," Ecological Economics, Elsevier, vol. 20(1), pages 3-24, January.
    3. Nicole Jackson & Megan Konar & Arjen Y. Hoekstra, 2015. "The Water Footprint of Food Aid," Sustainability, MDPI, vol. 7(6), pages 1-22, May.
    4. Tom Gleeson & Yoshihide Wada & Marc F. P. Bierkens & Ludovicus P. H. van Beek, 2012. "Water balance of global aquifers revealed by groundwater footprint," Nature, Nature, vol. 488(7410), pages 197-200, August.
    5. Sharma, Bharat & Molden, D. & Cook, Simon, 2015. "Water use efficiency in agriculture: measurement, current situation and trends," IWMI Books, Reports H046807, International Water Management Institute.
    6. Sharma, Bharat & Molden, D. & Cook, Simon, 2015. "Water use efficiency in agriculture: measurement, current situation and trends," Book Chapters,, International Water Management Institute.
    7. Ignacio Cazcarro & Rosa Duarte & Miguel Martín-Retortillo & Vicente Pinilla & Ana Serrano, 2015. "How Sustainable is the Increase in the Water Footprint of the Spanish Agricultural Sector? A Provincial Analysis between 1955 and 2005–2010," Sustainability, MDPI, vol. 7(5), pages 1-26, April.
    8. Richard G. Taylor & Bridget Scanlon & Petra Döll & Matt Rodell & Rens van Beek & Yoshihide Wada & Laurent Longuevergne & Marc Leblanc & James S. Famiglietti & Mike Edmunds & Leonard Konikow & Timothy , 2013. "Ground water and climate change," Nature Climate Change, Nature, vol. 3(4), pages 322-329, April.
    9. Ángel De Miguel & Malaak Kallache & Eloy García-Calvo, 2015. "The Water Footprint of Agriculture in Duero River Basin," Sustainability, MDPI, vol. 7(6), pages 1-22, May.
    10. Wackernagel, Mathis & Onisto, Larry & Bello, Patricia & Callejas Linares, Alejandro & Susana Lopez Falfan, Ina & Mendez Garcia, Jesus & Isabel Suarez Guerrero, Ana & Guadalupe Suarez Guerrero, Ma., 1999. "National natural capital accounting with the ecological footprint concept," Ecological Economics, Elsevier, vol. 29(3), pages 375-390, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huaiyin Jiang & Gang He, 2023. "Analysis of Spatial and Temporal Evolution of Regional Water Resources Carrying Capacity and Influencing Factors—Anhui Province as an Example," Sustainability, MDPI, vol. 15(14), pages 1-19, July.
    2. Zhongfang Zhang & Lijun Hou & Yuhao Qian & Xing Wan, 2022. "Effect of Zero Growth of Fertilizer Action on Ecological Efficiency of Grain Production in China under the Background of Carbon Emission Reduction," Sustainability, MDPI, vol. 14(22), pages 1-16, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arjen Y. Hoekstra & Ashok K. Chapagain & Guoping Zhang, 2015. "Water Footprints and Sustainable Water Allocation," Sustainability, MDPI, vol. 8(1), pages 1-6, December.
    2. Chen, B. & Chen, G.Q., 2007. "Modified ecological footprint accounting and analysis based on embodied exergy--a case study of the Chinese society 1981-2001," Ecological Economics, Elsevier, vol. 61(2-3), pages 355-376, March.
    3. Xin Yang & Fan Zhang & Cheng Luo & Anlu Zhang, 2019. "Farmland Ecological Compensation Zoning and Horizontal Fiscal Payment Mechanism in Wuhan Agglomeration, China, From the Perspective of Ecological Footprint," Sustainability, MDPI, vol. 11(8), pages 1-15, April.
    4. Xueru Guo & Rui Zuo & Li Meng & Jinsheng Wang & Yanguo Teng & Xin Liu & Minhua Chen, 2018. "Seasonal and Spatial Variability of Anthropogenic and Natural Factors Influencing Groundwater Quality Based on Source Apportionment," IJERPH, MDPI, vol. 15(2), pages 1-19, February.
    5. Sesma Martín, Diego & Rubio-Varas, Mª. del Mar, 2017. "Freshwater for Cooling Needs: A Long-Run Approach to the Nuclear Water Footprint in Spain," Ecological Economics, Elsevier, vol. 140(C), pages 146-156.
    6. Lijing Tang & Yuanyuan Yang & Dongyan Wang & Qing Wei, 2022. "Optimizing County-Level Land-Use Structure Method: Case Study of W County, China," IJERPH, MDPI, vol. 19(9), pages 1-26, April.
    7. Fernández, J.E. & Alcon, F. & Diaz-Espejo, A. & Hernandez-Santana, V. & Cuevas, M.V., 2020. "Water use indicators and economic analysis for on-farm irrigation decision: A case study of a super high density olive tree orchard," Agricultural Water Management, Elsevier, vol. 237(C).
    8. Hoekstra, A.Y., 2009. "Human appropriation of natural capital: A comparison of ecological footprint and water footprint analysis," Ecological Economics, Elsevier, vol. 68(7), pages 1963-1974, May.
    9. Hanna Safwat H. Shakir & Kendall T. Harris & Irvin W. Osborne-Lee & Gian Paolo Cesaretti & Rosa Misso & Magdy T. Khalil, 2013. "Global Ecological Footprint, Climate Change Impacts and Assessment," RIVISTA DI STUDI SULLA SOSTENIBILITA', FrancoAngeli Editore, vol. 2013(2), pages 9-38.
    10. Thomas Wiedmann & John Barrett, 2010. "A Review of the Ecological Footprint Indicator—Perceptions and Methods," Sustainability, MDPI, vol. 2(6), pages 1-49, June.
    11. Holden, Petra B. & Ziervogel, Gina & Hoffman, M. Timm & New, Mark G., 2021. "Transition from subsistence grazing to nature-based recreation: A nuanced view of land abandonment in a mountain social-ecological system, southwestern Cape, South Africa," Land Use Policy, Elsevier, vol. 105(C).
    12. Sara Soares & Daniela Terêncio & Luís Fernandes & João Machado & Fernando A.L. Pacheco, 2019. "The Potential of Small Dams for Conjunctive Water Management in Rural Municipalities," IJERPH, MDPI, vol. 16(7), pages 1-17, April.
    13. Áron Szennay & Cecília Szigeti & Judit Beke & László Radácsi, 2021. "Ecological Footprint as an Indicator of Corporate Environmental Performance—Empirical Evidence from Hungarian SMEs," Sustainability, MDPI, vol. 13(2), pages 1-17, January.
    14. Aijun Guo & Daiwei Jiang & Fanglei Zhong & Xiaojiang Ding & Xiaoyu Song & Qingping Cheng & Yongnian Zhang & Chunlin Huang, 2019. "Prediction of Technological Change under Shared Socioeconomic Pathways and Regional Differences: A Case Study of Irrigation Water Use Efficiency Changes in Chinese Provinces," Sustainability, MDPI, vol. 11(24), pages 1-19, December.
    15. Agnieszka Starzyk & Janusz Marchwiński & Eliza Maciejewska & Piotr Bujak & Kinga Rybak-Niedziółka & Magdalena Grochulska-Salak & Zdzisław Skutnik, 2023. "Resilience in Urban and Architectural Design—The Issue of Sustainable Development for Areas Associated with an Embankment," Sustainability, MDPI, vol. 15(11), pages 1-25, June.
    16. Abdulazeez Hudu Wudil & Asghar Ali & Khalid Mushtaq & Sajjad Ahmad Baig & Magdalena Radulescu & Piotr Prus & Muhammad Usman & László Vasa, 2023. "Water Use Efficiency and Productivity of Irrigated Rice Cultivation in Nigeria: An Application of the Stochastic Frontier Approach," Sustainability, MDPI, vol. 15(10), pages 1-19, May.
    17. Yuanhong Tian & Matthias Ruth & Dajian Zhu, 2017. "Using the IPAT identity and decoupling analysis to estimate water footprint variations for five major food crops in China from 1978 to 2010," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(6), pages 2355-2375, December.
    18. Çetin, Oner & Kara, Abdurrahman, 2019. "Assesment of water productivity using different drip irrigation systems for cotton," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    19. Uygan, Demet & Cetin, Oner & Alveroglu, Volkan & Sofuoglu, Aytug, 2021. "Improvement of water saving and economic productivity based on quotation with sugar content of sugar beet using linear move sprinkler irrigation," Agricultural Water Management, Elsevier, vol. 255(C).
    20. Bwambale, Erion & Abagale, Felix K. & Anornu, Geophrey K., 2022. "Smart irrigation monitoring and control strategies for improving water use efficiency in precision agriculture: A review," Agricultural Water Management, Elsevier, vol. 260(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:16:p:10380-:d:893341. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.