IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i13p7865-d848685.html
   My bibliography  Save this article

Intelligent Evacuation Route Planning Algorithm Based on Maximum Flow

Author

Listed:
  • Li Liu

    (College of Digital Technology and Engineering, Ningbo University of Finance and Economics, Ningbo 315175, China)

  • Huan Jin

    (Department of Computer Science, University of Nottingham Ningbo China, Ningbo 315100, China)

  • Yangguang Liu

    (College of Finance and Information, Ningbo University of Finance and Economics, Ningbo 315175, China)

  • Xiaomin Zhang

    (College of Digital Technology and Engineering, Ningbo University of Finance and Economics, Ningbo 315175, China)

Abstract

This paper focuses on the problem of intelligent evacuation route planning for emergencies, including natural and human resource disasters and epidemic disasters, such as the COVID-19 pandemic. The goal of this study was to quickly generate an evacuation route for a community for victims to be evacuated to safe areas as soon as possible. The evacuation route planning problem needs to determine appropriate routes and allocate a specific number of victims to each route. This paper formulates the problem as a maximum flow problem and proposes a binary search algorithm based on a maximum flow algorithm, which is an intelligent optimization evacuation route planning algorithm for the community. Furthermore, the formulation is a nonlinear optimization problem because each route’s suggested evacuation time is a convex nonlinear function of the number of victims assigned to that route. Finally, numerical examples and Matlab simulations demonstrate not only the algorithm’s effectiveness, but also that the algorithm has low complexity and high precision. The study’s findings offer a practical solution for nonlinear models of evacuation route planning, which will be widely used in human society and robot path planning schemes.

Suggested Citation

  • Li Liu & Huan Jin & Yangguang Liu & Xiaomin Zhang, 2022. "Intelligent Evacuation Route Planning Algorithm Based on Maximum Flow," IJERPH, MDPI, vol. 19(13), pages 1-14, June.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:13:p:7865-:d:848685
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/13/7865/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/13/7865/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bruce Hoppe & Éva Tardos, 2000. "The Quickest Transshipment Problem," Mathematics of Operations Research, INFORMS, vol. 25(1), pages 36-62, February.
    2. Carey, Malachy & Subrahmanian, Eswaran, 2000. "An approach to modelling time-varying flows on congested networks," Transportation Research Part B: Methodological, Elsevier, vol. 34(3), pages 157-183, April.
    3. Pursals, Salvador Casadesús & Garzón, Federico Garriga, 2009. "Optimal building evacuation time considering evacuation routes," European Journal of Operational Research, Elsevier, vol. 192(2), pages 692-699, January.
    4. Cova, Thomas J. & Johnson, Justin P., 2003. "A network flow model for lane-based evacuation routing," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(7), pages 579-604, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haotian Zheng & Shuchuan Zhang & Junqi Zhu & Ziyan Zhu & Xin Fang, 2022. "Evacuation in Buildings Based on BIM: Taking a Fire in a University Library as an Example," IJERPH, MDPI, vol. 19(23), pages 1-21, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jianghua Zhang & Yang Liu & Yingxue Zhao & Tianhu Deng, 2020. "Emergency evacuation problem for a multi-source and multi-destination transportation network: mathematical model and case study," Annals of Operations Research, Springer, vol. 291(1), pages 1153-1181, August.
    2. Urmila Pyakurel & Tanka Nath Dhamala, 2017. "Continuous Dynamic Contraflow Approach for Evacuation Planning," Annals of Operations Research, Springer, vol. 253(1), pages 573-598, June.
    3. Saadatseresht, Mohammad & Mansourian, Ali & Taleai, Mohammad, 2009. "Evacuation planning using multiobjective evolutionary optimization approach," European Journal of Operational Research, Elsevier, vol. 198(1), pages 305-314, October.
    4. Lim, Gino J. & Zangeneh, Shabnam & Reza Baharnemati, M. & Assavapokee, Tiravat, 2012. "A capacitated network flow optimization approach for short notice evacuation planning," European Journal of Operational Research, Elsevier, vol. 223(1), pages 234-245.
    5. Urmila Pyakurel & Stephan Dempe, 2020. "Network Flow with Intermediate Storage: Models and Algorithms," SN Operations Research Forum, Springer, vol. 1(4), pages 1-23, December.
    6. Mukesh Rungta & Gino Lim & MohammadReza Baharnemati, 2012. "Optimal egress time calculation and path generation for large evacuation networks," Annals of Operations Research, Springer, vol. 201(1), pages 403-421, December.
    7. Jiang-Hua Zhang & Hai-Yue Liu & Rui Zhu & Yang Liu, 2017. "Emergency Evacuation of Hazardous Chemical Accidents Based on Diffusion Simulation," Complexity, Hindawi, vol. 2017, pages 1-16, December.
    8. Yuepeng Cui & Hao Xu & Kuangmin Gong, 2023. "A diversion routing optimization model for urban evacuation planning," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(2), pages 2399-2416, March.
    9. Urmila Pyakurel & Hari Nandan Nath & Stephan Dempe & Tanka Nath Dhamala, 2019. "Efficient Dynamic Flow Algorithms for Evacuation Planning Problems with Partial Lane Reversal," Mathematics, MDPI, vol. 7(10), pages 1-29, October.
    10. Zhang, Nan & Huang, Hong & Su, Boni & Zhao, Jinlong, 2015. "Analysis of dynamic road risk for pedestrian evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 430(C), pages 171-183.
    11. Yuya Higashikawa & Naoki Katoh, 2019. "A Survey on Facility Location Problems in Dynamic Flow Networks," The Review of Socionetwork Strategies, Springer, vol. 13(2), pages 163-208, October.
    12. David Eichler & Hillel Bar-Gera & Meir Blachman, 2013. "Vortex-Based Zero-Conflict Design of Urban Road Networks," Networks and Spatial Economics, Springer, vol. 13(3), pages 229-254, September.
    13. Fang, Zhixiang & Zong, Xinlu & Li, Qingquan & Li, Qiuping & Xiong, Shengwu, 2011. "Hierarchical multi-objective evacuation routing in stadium using ant colony optimization approach," Journal of Transport Geography, Elsevier, vol. 19(3), pages 443-451.
    14. Melchiori, Anna & Sgalambro, Antonino, 2020. "A branch and price algorithm to solve the Quickest Multicommodity k-splittable Flow Problem," European Journal of Operational Research, Elsevier, vol. 282(3), pages 846-857.
    15. Saurabh Amin & Patrick Jaillet & Haripriya Pulyassary & Manxi Wu, 2023. "Market Design for Dynamic Pricing and Pooling in Capacitated Networks," Papers 2307.03994, arXiv.org, revised Nov 2023.
    16. Bellei, Giuseppe & Gentile, Guido & Papola, Natale, 2005. "A within-day dynamic traffic assignment model for urban road networks," Transportation Research Part B: Methodological, Elsevier, vol. 39(1), pages 1-29, January.
    17. Liu, Zhichen & Li, Ying & Zhang, Zhaoyi & Yu, Wenbo, 2022. "A new evacuation accessibility analysis approach based on spatial information," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    18. S Opasanon & E Miller-Hooks, 2009. "The Safest Escape problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(12), pages 1749-1758, December.
    19. Esposito Amideo, A. & Scaparra, M.P. & Kotiadis, K., 2019. "Optimising shelter location and evacuation routing operations: The critical issues," European Journal of Operational Research, Elsevier, vol. 279(2), pages 279-295.
    20. Hector R. Lim & Ma. Bernadeth B. Lim & Mongkut Piantanakulchai, 2016. "Determinants of household flood evacuation mode choice in a developing country," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(1), pages 507-532, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:13:p:7865-:d:848685. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.