IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i16p8578-d614174.html
   My bibliography  Save this article

Applications of Artificial Intelligence, Machine Learning, Big Data and the Internet of Things to the COVID-19 Pandemic: A Scientometric Review Using Text Mining

Author

Listed:
  • Ignacio Rodríguez-Rodríguez

    (Protein Structure and Bioinformatics Resech Group, Department of Experimental Medical Science, Lund University, SE-221 84 Lund, Sweden)

  • José-Víctor Rodríguez

    (Departamento de Tecnologías de la Información y las Comunicaciones, School of Telecommunications Engineering, Universidad Politécnica de Cartagena, 30202 Cartagena, Spain)

  • Niloofar Shirvanizadeh

    (Protein Structure and Bioinformatics Resech Group, Department of Experimental Medical Science, Lund University, SE-221 84 Lund, Sweden)

  • Andrés Ortiz

    (Departamento de Ingeniería de Comunicaciones, School of Telecommunications Engineering, Universidad de Málaga, 29071 Málaga, Spain)

  • Domingo-Javier Pardo-Quiles

    (Departamento de Tecnologías de la Información y las Comunicaciones, School of Telecommunications Engineering, Universidad Politécnica de Cartagena, 30202 Cartagena, Spain)

Abstract

The COVID-19 pandemic has wreaked havoc in every country in the world, with serious health-related, economic, and social consequences. Since its outbreak in March 2020, many researchers from different fields have joined forces to provide a wide range of solutions, and the support for this work from artificial intelligence (AI) and other emerging concepts linked to intelligent data analysis has been decisive. The enormous amount of research and the high number of publications during this period makes it difficult to obtain an overall view of the different applications of AI to the management of COVID-19 and an understanding of how research in this field has been evolving. Therefore, in this paper, we carry out a scientometric analysis of this area supported by text mining, including a review of 18,955 publications related to AI and COVID-19 from the Scopus database from March 2020 to June 2021 inclusive. For this purpose, we used VOSviewer software, which was developed by researchers at Leiden University in the Netherlands. This allowed us to examine the exponential growth in research on this issue and its distribution by country, and to highlight the clear hegemony of the United States (USA) and China in this respect. We used an automatic process to extract topics of research interest and observed that the most important current lines of research focused on patient-based solutions. We also identified the most relevant journals in terms of the COVID-19 pandemic, demonstrated the growing value of open-access publication, and highlighted the most influential authors by means of an analysis of citations and co-citations. This study provides an overview of the current status of research on the application of AI to the pandemic.

Suggested Citation

  • Ignacio Rodríguez-Rodríguez & José-Víctor Rodríguez & Niloofar Shirvanizadeh & Andrés Ortiz & Domingo-Javier Pardo-Quiles, 2021. "Applications of Artificial Intelligence, Machine Learning, Big Data and the Internet of Things to the COVID-19 Pandemic: A Scientometric Review Using Text Mining," IJERPH, MDPI, vol. 18(16), pages 1-29, August.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:16:p:8578-:d:614174
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/16/8578/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/16/8578/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kai Li & Jason Rollins & Erjia Yan, 2018. "Web of Science use in published research and review papers 1997–2017: a selective, dynamic, cross-domain, content-based analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(1), pages 1-20, April.
    2. Ludo Waltman & Nees Jan Eck, 2012. "A new methodology for constructing a publication-level classification system of science," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(12), pages 2378-2392, December.
    3. Janny C. Hoekstra & Peter S. H. Leeflang, 2020. "Marketing in the era of COVID-19," Italian Journal of Marketing, Springer, vol. 2020(4), pages 249-260, December.
    4. Anne-Wil Harzing & Satu Alakangas, 2016. "Google Scholar, Scopus and the Web of Science: a longitudinal and cross-disciplinary comparison," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(2), pages 787-804, February.
    5. Halevi, Gali & Moed, Henk & Bar-Ilan, Judit, 2017. "Suitability of Google Scholar as a source of scientific information and as a source of data for scientific evaluation—Review of the Literature," Journal of Informetrics, Elsevier, vol. 11(3), pages 823-834.
    6. Nees Jan Eck & Ludo Waltman & Ed C. M. Noyons & Reindert K. Buter, 2010. "Automatic term identification for bibliometric mapping," Scientometrics, Springer;Akadémiai Kiadó, vol. 82(3), pages 581-596, March.
    7. M. M. Kessler, 1963. "Bibliographic coupling between scientific papers," American Documentation, Wiley Blackwell, vol. 14(1), pages 10-25, January.
    8. Philippe Mongeon & Adèle Paul-Hus, 2016. "The journal coverage of Web of Science and Scopus: a comparative analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(1), pages 213-228, January.
    9. Antonio Fusco & Grazia Dicuonzo & Vittorio Dell’Atti & Marco Tatullo, 2020. "Blockchain in Healthcare: Insights on COVID-19," IJERPH, MDPI, vol. 17(19), pages 1-12, September.
    10. Peter Dannenberg & Martina Fuchs & Tim Riedler & Cathrin Wiedemann, 2020. "Digital Transition by COVID‐19 Pandemic? The German Food Online Retail," Tijdschrift voor Economische en Sociale Geografie, Royal Dutch Geographical Society KNAG, vol. 111(3), pages 543-560, July.
    11. Loet Leydesdorff & Lutz Bornmann, 2012. "Mapping (USPTO) patent data using overlays to Google Maps," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(7), pages 1442-1458, July.
    12. Erjia Yan & Ying Ding & Elin K. Jacob, 2012. "Overlaying communities and topics: an analysis on publication networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 90(2), pages 499-513, February.
    13. Kevin W. Boyack & Richard Klavans, 2010. "Co‐citation analysis, bibliographic coupling, and direct citation: Which citation approach represents the research front most accurately?," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 61(12), pages 2389-2404, December.
    14. Nees Jan Eck & Ludo Waltman, 2010. "Software survey: VOSviewer, a computer program for bibliometric mapping," Scientometrics, Springer;Akadémiai Kiadó, vol. 84(2), pages 523-538, August.
    15. Junwen Zhu & Weishu Liu, 2020. "A tale of two databases: the use of Web of Science and Scopus in academic papers," Scientometrics, Springer;Akadémiai Kiadó, vol. 123(1), pages 321-335, April.
    16. Jiban K. Pal, 2021. "Visualizing the knowledge outburst in global research on COVID-19," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(5), pages 4173-4193, May.
    17. Ludo Waltman & Nees Jan van Eck, 2012. "A new methodology for constructing a publication‐level classification system of science," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 63(12), pages 2378-2392, December.
    18. Henry Small, 1973. "Co‐citation in the scientific literature: A new measure of the relationship between two documents," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 24(4), pages 265-269, July.
    19. Guillermo Gallacher & Iqbal Hossain, 2020. "Remote Work and Employment Dynamics under COVID-19: Evidence from Canada," Canadian Public Policy, University of Toronto Press, vol. 46(S1), pages 44-54, July.
    20. Kevin W. Boyack & Richard Klavans, 2010. "Co-citation analysis, bibliographic coupling, and direct citation: Which citation approach represents the research front most accurately?," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 61(12), pages 2389-2404, December.
    21. Israel Edem Agbehadji & Bankole Osita Awuzie & Alfred Beati Ngowi & Richard C. Millham, 2020. "Review of Big Data Analytics, Artificial Intelligence and Nature-Inspired Computing Models towards Accurate Detection of COVID-19 Pandemic Cases and Contact Tracing," IJERPH, MDPI, vol. 17(15), pages 1-16, July.
    22. Milad Haghani & Pegah Varamini, 2021. "Temporal evolution, most influential studies and sleeping beauties of the coronavirus literature," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(8), pages 7005-7050, August.
    23. Valderrama-Zurián, Juan-Carlos & Aguilar-Moya, Remedios & Melero-Fuentes, David & Aleixandre-Benavent, Rafael, 2015. "A systematic analysis of duplicate records in Scopus," Journal of Informetrics, Elsevier, vol. 9(3), pages 570-576.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nattakit Yuduang & Ardvin Kester S. Ong & Yogi Tri Prasetyo & Thanatorn Chuenyindee & Poonyawat Kusonwattana & Waranya Limpasart & Thaninrat Sittiwatethanasiri & Ma. Janice J. Gumasing & Josephine D. , 2022. "Factors Influencing the Perceived Effectiveness of COVID-19 Risk Assessment Mobile Application “MorChana” in Thailand: UTAUT2 Approach," IJERPH, MDPI, vol. 19(9), pages 1-19, May.
    2. Thanatorn Chuenyindee & Ardvin Kester S. Ong & Yogi Tri Prasetyo & Satria Fadil Persada & Reny Nadlifatin & Thaninrat Sittiwatethanasiri, 2022. "Factors Affecting the Perceived Usability of the COVID-19 Contact-Tracing Application “Thai Chana” during the Early COVID-19 Omicron Period," IJERPH, MDPI, vol. 19(7), pages 1-16, April.
    3. Idiano D’Adamo & Assunta Di Vaio & Alessandro Formiconi & Antonio Soldano, 2022. "European IoT Use in Homes: Opportunity or Threat to Households?," IJERPH, MDPI, vol. 19(21), pages 1-18, November.
    4. Yan Tong & Nan Cheng & Xinran Jiang & Kai Wang & Fei Wang & Xinxin Lin & Fang Wang, 2022. "The Trends and Hotspots in Premature Ovarian Insufficiency Therapy from 2000 to 2022," IJERPH, MDPI, vol. 19(18), pages 1-18, September.
    5. Alberto Postiglione & Mario Monteleone, 2024. "Predictive Maintenance with Linguistic Text Mining," Mathematics, MDPI, vol. 12(7), pages 1-18, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adam Kozakiewicz & Andrzej Lis, 2021. "Energy Efficiency in Cloud Computing: Exploring the Intellectual Structure of the Research Field and Its Research Fronts with Direct Citation Analysis," Energies, MDPI, vol. 14(21), pages 1-17, October.
    2. Yanto Chandra, 2018. "Mapping the evolution of entrepreneurship as a field of research (1990–2013): A scientometric analysis," PLOS ONE, Public Library of Science, vol. 13(1), pages 1-24, January.
    3. Michel Zitt, 2015. "Meso-level retrieval: IR-bibliometrics interplay and hybrid citation-words methods in scientific fields delineation," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(3), pages 2223-2245, March.
    4. Yun, Jinhyuk & Ahn, Sejung & Lee, June Young, 2020. "Return to basics: Clustering of scientific literature using structural information," Journal of Informetrics, Elsevier, vol. 14(4).
    5. Muñoz-Écija, Teresa & Vargas-Quesada, Benjamín & Chinchilla Rodríguez, Zaida, 2019. "Coping with methods for delineating emerging fields: Nanoscience and nanotechnology as a case study," Journal of Informetrics, Elsevier, vol. 13(4).
    6. Yun, Jinhyuk, 2022. "Generalization of bibliographic coupling and co-citation using the node split network," Journal of Informetrics, Elsevier, vol. 16(2).
    7. Sjögårde, Peter & Ahlgren, Per, 2018. "Granularity of algorithmically constructed publication-level classifications of research publications: Identification of topics," Journal of Informetrics, Elsevier, vol. 12(1), pages 133-152.
    8. Victor Tiberius & Meike Rietz & Ricarda B. Bouncken, 2020. "Performance Analysis and Science Mapping of Institutional Entrepreneurship Research," Administrative Sciences, MDPI, vol. 10(3), pages 1-21, September.
    9. Raminta Pranckutė, 2021. "Web of Science (WoS) and Scopus: The Titans of Bibliographic Information in Today’s Academic World," Publications, MDPI, vol. 9(1), pages 1-59, March.
    10. Daniele Rotolo & Ismael Rafols & Michael Hopkins & Loet Leydesdorff, 2014. "Scientometric Mapping as a Strategic Intelligence Tool for the Governance of Emerging Technologies," SPRU Working Paper Series 2014-10, SPRU - Science Policy Research Unit, University of Sussex Business School.
    11. Rons, Nadine, 2018. "Bibliometric approximation of a scientific specialty by combining key sources, title words, authors and references," Journal of Informetrics, Elsevier, vol. 12(1), pages 113-132.
    12. Forliano, Canio & De Bernardi, Paola & Yahiaoui, Dorra, 2021. "Entrepreneurial universities: A bibliometric analysis within the business and management domains," Technological Forecasting and Social Change, Elsevier, vol. 165(C).
    13. Zhang, Yi & Shang, Lining & Huang, Lu & Porter, Alan L. & Zhang, Guangquan & Lu, Jie & Zhu, Donghua, 2016. "A hybrid similarity measure method for patent portfolio analysis," Journal of Informetrics, Elsevier, vol. 10(4), pages 1108-1130.
    14. Jochen Gläser & Wolfgang Glänzel & Andrea Scharnhorst, 2017. "Same data—different results? Towards a comparative approach to the identification of thematic structures in science," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(2), pages 981-998, May.
    15. Piñeiro-Chousa, Juan & López-Cabarcos, M. Ángeles & Romero-Castro, Noelia María & Pérez-Pico, Ada María, 2020. "Innovation, entrepreneurship and knowledge in the business scientific field: Mapping the research front," Journal of Business Research, Elsevier, vol. 115(C), pages 475-485.
    16. Rey-Long Liu, 2017. "A new bibliographic coupling measure with descriptive capability," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(2), pages 915-935, February.
    17. Ying Huang & Wolfgang Glänzel & Lin Zhang, 2021. "Tracing the development of mapping knowledge domains," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 6201-6224, July.
    18. Jun-Ping Qiu & Ke Dong & Hou-Qiang Yu, 2014. "Comparative study on structure and correlation among author co-occurrence networks in bibliometrics," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(2), pages 1345-1360, November.
    19. Duong, Quang Huy & Zhou, Li & Meng, Meng & Nguyen, Truong Van & Ieromonachou, Petros & Nguyen, Duy Tiep, 2022. "Understanding product returns: A systematic literature review using machine learning and bibliometric analysis," International Journal of Production Economics, Elsevier, vol. 243(C).
    20. Toshiyuki Hasumi & Mei-Shiu Chiu, 2022. "Online mathematics education as bio-eco-techno process: bibliometric analysis using co-authorship and bibliographic coupling," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(8), pages 4631-4654, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:16:p:8578-:d:614174. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.