IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i16p8497-d612602.html
   My bibliography  Save this article

Comparative Study of CO 2 Capture by Adsorption in Sustainable Date Pits-Derived Porous Activated Carbon and Molecular Sieve

Author

Listed:
  • Mohd Danish

    (Chemical Engineering Department, College of Engineering, King Khalid University, Abha 61411, Saudi Arabia
    Chemical Engineering Department, University of Petroleum and Energy Studies, Dehradun 248001, India)

  • Vijay Parthasarthy

    (Chemical Engineering Department, University of Petroleum and Energy Studies, Dehradun 248001, India)

  • Mohammed K. Al Mesfer

    (Chemical Engineering Department, College of Engineering, King Khalid University, Abha 61411, Saudi Arabia)

Abstract

The rising CO 2 concentration has prompted the quest of innovative tools to reduce its effect on the environment. A comparative adsorption study using sustainable low-cost date pits-derived activated carbon and molecular sieve has been carried out for CO 2 separation. The adsorb ents were characterized for surface area and morphological properties. The outcomes of flow rate, temperature and initial adsorbate concentration on adsorption performance were examined. The process effectiveness was investigated by breakthrough time, adsorbate loading, efficiency, utilized bed height, mass transfer zone and utilization factor. The immensely steep adsorption response curves demonstrate acceptable utilization of adsorbent capability under breakthrough condition. The adsorbate loading 73.08 mg/g is achieved with an 0.938 column efficiency for developed porous activated carbon at 298 K. The reduced 1.20 cm length of mass transfer zone with enhanced capacity utilization factor equal 0.97 at 298 K with C in = 5% signifies better adsorption performance for date pits-derived adsorbent. The findings recommend that produced activated carbon is greatly promising to adsorb CO 2 in fixed bed column under continuous mode.

Suggested Citation

  • Mohd Danish & Vijay Parthasarthy & Mohammed K. Al Mesfer, 2021. "Comparative Study of CO 2 Capture by Adsorption in Sustainable Date Pits-Derived Porous Activated Carbon and Molecular Sieve," IJERPH, MDPI, vol. 18(16), pages 1-18, August.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:16:p:8497-:d:612602
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/16/8497/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/16/8497/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hao, Wenming & Björkman, Eva & Lilliestråle, Malte & Hedin, Niklas, 2013. "Activated carbons prepared from hydrothermally carbonized waste biomass used as adsorbents for CO2," Applied Energy, Elsevier, vol. 112(C), pages 526-532.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xue‐Fei Wang & Long Xiong & Li Li & Jun‐Jun Zhong, 2020. "Effect of heat treatment temperature on CO2 capture of nitrogen‐enriched porous carbon fibers," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(2), pages 461-471, April.
    2. Kambo, Harpreet Singh & Dutta, Animesh, 2015. "A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 359-378.
    3. Álvarez-Murillo, A. & Sabio, E. & Ledesma, B. & Román, S. & González-García, C.M., 2016. "Generation of biofuel from hydrothermal carbonization of cellulose. Kinetics modelling," Energy, Elsevier, vol. 94(C), pages 600-608.
    4. Pal, Animesh & Uddin, Kutub & Saha, Bidyut Baran & Thu, Kyaw & Kil, Hyun-Sig & Yoon, Seong-Ho & Miyawaki, Jin, 2020. "A benchmark for CO2 uptake onto newly synthesized biomass-derived activated carbons," Applied Energy, Elsevier, vol. 264(C).
    5. Lidia Domínguez-Ramos & Ainoha Prieto-Estalrich & Giulio Malucelli & Diego Gómez-Díaz & María Sonia Freire & Massimo Lazzari & Julia González-Álvarez, 2022. "N- and S-Doped Carbons Derived from Polyacrylonitrile for Gases Separation," Sustainability, MDPI, vol. 14(7), pages 1-19, March.
    6. Qian, Kezhen & Kumar, Ajay & Zhang, Hailin & Bellmer, Danielle & Huhnke, Raymond, 2015. "Recent advances in utilization of biochar," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1055-1064.
    7. Chiappero, Marco & Norouzi, Omid & Hu, Mingyu & Demichelis, Francesca & Berruti, Franco & Di Maria, Francesco & Mašek, Ondřej & Fiore, Silvia, 2020. "Review of biochar role as additive in anaerobic digestion processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    8. Kento Torii & Mayu Hamazaki & Shoichi Kumon & Kimitaka Sato & Shogo Kato & Kiyoshi Dowaki, 2023. "A System Analysis of a Bio-Hydrogen Production System Using Granulated Mine Residue as a H 2 S Adsorbent," Energies, MDPI, vol. 16(6), pages 1-21, March.
    9. Nourhen Hsini & Vahid Saadattalab & Xia Wang & Nawres Gharred & Hatem Dhaouadi & Sonia Dridi-Dhaouadi & Niklas Hedin, 2022. "Activated Carbons Produced from Hydrothermally Carbonized Prickly Pear Seed Waste," Sustainability, MDPI, vol. 14(21), pages 1-17, November.
    10. Deneb Peredo-Mancilla & Imen Ghouma & Cecile Hort & Camelia Matei Ghimbeu & Mejdi Jeguirim & David Bessieres, 2018. "CO 2 and CH 4 Adsorption Behavior of Biomass-Based Activated Carbons," Energies, MDPI, vol. 11(11), pages 1-13, November.
    11. Lee, Jae Won & Torres Pineda, Israel & Lee, Jung Hun & Kang, Yong Tae, 2016. "Combined CO2 absorption/regeneration performance enhancement by using nanoabsorbents," Applied Energy, Elsevier, vol. 178(C), pages 164-176.
    12. Kong, Yong & Shen, Xiaodong & Cui, Sheng & Fan, Maohong, 2015. "Development of monolithic adsorbent via polymeric sol–gel process for low-concentration CO2 capture," Applied Energy, Elsevier, vol. 147(C), pages 308-317.
    13. Michela Langone & Daniele Basso, 2020. "Process Waters from Hydrothermal Carbonization of Sludge: Characteristics and Possible Valorization Pathways," IJERPH, MDPI, vol. 17(18), pages 1-33, September.
    14. Nausika Querejeta & M. Victoria Gil & Fernando Rubiera & Covadonga Pevida, 2018. "Sustainable coffee†based CO2 adsorbents: toward a greener production via hydrothermal carbonization," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(2), pages 309-323, April.
    15. Plaza, M.G. & Durán, I. & Rubiera, F. & Pevida, C., 2015. "CO2 adsorbent pellets produced from pine sawdust: Effect of coal tar pitch addition," Applied Energy, Elsevier, vol. 144(C), pages 182-192.
    16. Mulu, Elshaday & M'Arimi, Milton M. & Ramkat, Rose C., 2021. "A review of recent developments in application of low cost natural materials in purification and upgrade of biogas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    17. Chen, Wan & Chen, Mengzijing & Yang, Mingke & Zou, Enbao & Li, Hai & Jia, Chongzhi & Sun, Changyu & Ma, Qinglan & Chen, Guangjin & Qin, Huibo, 2019. "A new approach to the upgrading of the traditional propylene carbonate washing process with significantly higher CO2 absorption capacity and selectivity," Applied Energy, Elsevier, vol. 240(C), pages 265-275.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:16:p:8497-:d:612602. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.