IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v15y2018i4p784-d141706.html
   My bibliography  Save this article

Assessment of Whole Body and Local Muscle Fatigue Using Electromyography and a Perceived Exertion Scale for Squat Lifting

Author

Listed:
  • Imran Ahmad

    (Department of Industrial Management Engineering, Hanyang University, Ansan 15588, Korea)

  • Jung-Yong Kim

    (Department of Industrial Management Engineering, Hanyang University, Ansan 15588, Korea)

Abstract

This research study aims at addressing the paradigm of whole body fatigue and local muscle fatigue detection for squat lifting. For this purpose, a comparison was made between perceived exertion with the heart rate and normalized mean power frequency (NMPF) of eight major muscles. The sample consisted of 25 healthy males (age: 30 ± 2.2 years). Borg’s CR-10 scale was used for perceived exertion for two segments of the body (lower and upper) and the whole body. The lower extremity of the body was observed to be dominant compared to the upper and whole body in perceived response. First mode of principal component analysis (PCA) was obtained through the covariance matrix for the eight muscles for 25 subjects for NMPF of eight muscles. The diagonal entries in the covariance matrix were observed for each muscle. The muscle with the highest absolute magnitude was observed across all the 25 subjects. The medial deltoid and the rectus femoris muscles were observed to have the highest frequency for each PCA across 25 subjects. The rectus femoris, having the highest counts in all subjects, validated that the lower extremity dominates the sense of whole body fatigue during squat lifting. The findings revealed that it is significant to take into account the relation between perceived and measured effort that can help prevent musculoskeletal disorders in repetitive occupational tasks.

Suggested Citation

  • Imran Ahmad & Jung-Yong Kim, 2018. "Assessment of Whole Body and Local Muscle Fatigue Using Electromyography and a Perceived Exertion Scale for Squat Lifting," IJERPH, MDPI, vol. 15(4), pages 1-12, April.
  • Handle: RePEc:gam:jijerp:v:15:y:2018:i:4:p:784-:d:141706
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/15/4/784/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/15/4/784/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. I.S. Dhindsa & R. Agarwal & H.S. Ryait, 2017. "Principal component analysis-based muscle identification for myoelectric-controlled exoskeleton knee," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(10), pages 1707-1720, July.
    2. I. T. Jolliffe, 1972. "Discarding Variables in a Principal Component Analysis. I: Artificial Data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 21(2), pages 160-173, June.
    3. Li, Baibing & Martin, Elaine B. & Morris, A. Julian, 2002. "On principal component analysis in L1," Computational Statistics & Data Analysis, Elsevier, vol. 40(3), pages 471-474, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pacheco, Joaquín & Casado, Silvia & Porras, Santiago, 2013. "Exact methods for variable selection in principal component analysis: Guide functions and pre-selection," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 95-111.
    2. Psaradakis, Zacharias & Vávra, Marián, 2014. "On testing for nonlinearity in multivariate time series," Economics Letters, Elsevier, vol. 125(1), pages 1-4.
    3. Bauer, Jan O. & Drabant, Bernhard, 2021. "Principal loading analysis," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    4. Cumming, J.A. & Wooff, D.A., 2007. "Dimension reduction via principal variables," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 550-565, September.
    5. Brusco, Michael J., 2014. "A comparison of simulated annealing algorithms for variable selection in principal component analysis and discriminant analysis," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 38-53.
    6. Jolliffe, Ian, 2022. "A 50-year personal journey through time with principal component analysis," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    7. Waßenhoven, Anna & Rennings, Michael & Laibach, Natalie & Bröring, Stefanie, 2023. "What constitutes a “Key Enabling Technology” for transition processes: Insights from the bioeconomy's technological landscape," Technological Forecasting and Social Change, Elsevier, vol. 197(C).
    8. Galimberti, Giuliano & Soffritti, Gabriele, 2007. "Model-based methods to identify multiple cluster structures in a data set," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 520-536, September.
    9. Doyo Enki & Nickolay Trendafilov, 2012. "Sparse principal components by semi-partition clustering," Computational Statistics, Springer, vol. 27(4), pages 605-626, December.
    10. Sergio Camiz & Valério D. Pillar, 2018. "Identifying the Informational/Signal Dimension in Principal Component Analysis," Mathematics, MDPI, vol. 6(11), pages 1-16, November.
    11. Juan Carlos Chávez & Felipe J. Fonseca & Manuel Gómez-Zaldívar, 2017. "Resoluciones de disputas comerciales y desempeño económico regional en México. (Commercial Disputes Resolution and Regional Economic Performance in Mexico)," Ensayos Revista de Economia, Universidad Autonoma de Nuevo Leon, Facultad de Economia, vol. 0(1), pages 79-93, May.
    12. Chen, Ray-Bing & Chen, Ying & Härdle, Wolfgang K., 2014. "TVICA—Time varying independent component analysis and its application to financial data," Computational Statistics & Data Analysis, Elsevier, vol. 74(C), pages 95-109.
    13. Yan Yu Chen & Chun-Cheih Chao & Fu-Chen Liu & Po-Chen Hsu & Hsueh-Fen Chen & Shih-Chi Peng & Yung-Jen Chuang & Chung-Yu Lan & Wen-Ping Hsieh & David Shan Hill Wong, 2013. "Dynamic Transcript Profiling of Candida albicans Infection in Zebrafish: A Pathogen-Host Interaction Study," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-16, September.
    14. Plat, Richard, 2009. "Stochastic portfolio specific mortality and the quantification of mortality basis risk," Insurance: Mathematics and Economics, Elsevier, vol. 45(1), pages 123-132, August.
    15. Kondylis, Athanassios & Whittaker, Joe, 2008. "Spectral preconditioning of Krylov spaces: Combining PLS and PC regression," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2588-2603, January.
    16. Simplice A. Asongu & Nicholas M. Odhiambo, 2019. "Governance, capital flight and industrialisation in Africa," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 8(1), pages 1-22, December.
    17. Hertrich Markus, 2019. "A Novel Housing Price Misalignment Indicator for Germany," German Economic Review, De Gruyter, vol. 20(4), pages 759-794, December.
    18. M. J. Aziakpono & S. Kleimeier & H. Sander, 2012. "Banking market integration in the SADC countries: evidence from interest rate analyses," Applied Economics, Taylor & Francis Journals, vol. 44(29), pages 3857-3876, October.
    19. Bianca Maria Colosimo & Luca Pagani & Marco Grasso, 2024. "Modeling spatial point processes in video-imaging via Ripley’s K-function: an application to spatter analysis in additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 35(1), pages 429-447, January.
    20. Ouyang, Yaofu & Li, Peng, 2018. "On the nexus of financial development, economic growth, and energy consumption in China: New perspective from a GMM panel VAR approach," Energy Economics, Elsevier, vol. 71(C), pages 238-252.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:15:y:2018:i:4:p:784-:d:141706. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.