Advanced Search
MyIDEAS: Login

Sparse principal components by semi-partition clustering

Contents:

Author Info

  • Doyo Enki

    ()

  • Nickolay Trendafilov

    ()

Registered author(s):

    Abstract

    A cluster-based method for constructing sparse principal components is proposed. The method initially forms clusters of variables, using a new clustering approach called the semi-partition, in two steps. First, the variables are ordered sequentially according to a criterion involving the correlations between variables. Then, the ordered variables are split into two parts based on their generalized variance. The first group of variables becomes an output cluster, while the second one—input for another run of the sequential process. After the optimal clusters have been formed, sparse components are constructed from the singular value decomposition of the data matrices of each cluster. The method is applied to simple data sets with smaller number of variables (p) than observations (n), as well as large gene expression data sets with p ≫ n. The resulting cluster-based sparse principal components are very promising as evaluated by objective criteria. The method is also compared with other existing approaches and is found to perform well. Copyright Springer-Verlag 2012

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://hdl.handle.net/10.1007/s00180-011-0280-2
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Springer in its journal Computational Statistics.

    Volume (Year): 27 (2012)
    Issue (Month): 4 (December)
    Pages: 605-626

    as in new window
    Handle: RePEc:spr:compst:v:27:y:2012:i:4:p:605-626

    Contact details of provider:
    Web page: http://www.springerlink.com/link.asp?id=120306

    Order Information:
    Web: http://link.springer.de/orders.htm

    Related research

    Keywords: Cluster-based; CSPC; Gene expression; Nonzero-loading; k-means;

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Li, Baibing & Martin, Elaine B. & Morris, A. Julian, 2002. "On principal component analysis in L1," Computational Statistics & Data Analysis, Elsevier, vol. 40(3), pages 471-474, September.
    2. Valentin Rousson & Theo Gasser, 2004. "Simple component analysis," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 53(4), pages 539-555.
    Full references (including those not matched with items on IDEAS)

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:27:y:2012:i:4:p:605-626. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Guenther Eichhorn) or (Christopher F Baum).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.