IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v12y2015i9p11254-11268d55527.html
   My bibliography  Save this article

The Influence of Climate Change on Atmospheric Deposition of Mercury in the Arctic—A Model Sensitivity Study

Author

Listed:
  • Kaj M. Hansen

    (Department of Environmental Science and Arctic Research Centre, Aarhus University, Roskilde 4000, Denmark)

  • Jesper H. Christensen

    (Department of Environmental Science and Arctic Research Centre, Aarhus University, Roskilde 4000, Denmark)

  • Jørgen Brandt

    (Department of Environmental Science and Arctic Research Centre, Aarhus University, Roskilde 4000, Denmark)

Abstract

Mercury (Hg) is a global pollutant with adverse health effects on humans and wildlife. It is of special concern in the Arctic due to accumulation in the food web and exposure of the Arctic population through a rich marine diet. Climate change may alter the exposure of the Arctic population to Hg. We have investigated the effect of climate change on the atmospheric Hg transport to and deposition within the Arctic by making a sensitivity study of how the atmospheric chemistry-transport model Danish Eulerian Hemispheric Model (DEHM) reacts to climate change forcing. The total deposition of Hg to the Arctic is 18% lower in the 2090s compared to the 1990s under the applied Special Report on Emissions Scenarios (SRES-A1B) climate scenario. Asia is the major anthropogenic source area (25% of the deposition to the Arctic) followed by Europe (6%) and North America (5%), with the rest arising from the background concentration, and this is independent of the climate. DEHM predicts between a 6% increase (Status Quo scenario) and a 37% decrease (zero anthropogenic emissions scenario) in Hg deposition to the Arctic depending on the applied emission scenario, while the combined effect of future climate and emission changes results in up to 47% lower Hg deposition.

Suggested Citation

  • Kaj M. Hansen & Jesper H. Christensen & Jørgen Brandt, 2015. "The Influence of Climate Change on Atmospheric Deposition of Mercury in the Arctic—A Model Sensitivity Study," IJERPH, MDPI, vol. 12(9), pages 1-15, September.
  • Handle: RePEc:gam:jijerp:v:12:y:2015:i:9:p:11254-11268:d:55527
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/12/9/11254/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/12/9/11254/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kyrre Sundseth & Jozef M. Pacyna & Anna Banel & Elisabeth G. Pacyna & Arja Rautio, 2015. "Climate Change Impacts on Environmental and Human Exposure to Mercury in the Arctic," IJERPH, MDPI, vol. 12(4), pages 1-21, March.
    2. Joeri Rogelj & Malte Meinshausen & Reto Knutti, 2012. "Global warming under old and new scenarios using IPCC climate sensitivity range estimates," Nature Climate Change, Nature, vol. 2(4), pages 248-253, April.
    3. Camilla Geels & Camilla Andersson & Otto Hänninen & Anne Sofie Lansø & Per E. Schwarze & Carsten Ambelas Skjøth & Jørgen Brandt, 2015. "Future Premature Mortality Due to O 3 , Secondary Inorganic Aerosols and Primary PM in Europe — Sensitivity to Changes in Climate, Anthropogenic Emissions, Population and Building Stock," IJERPH, MDPI, vol. 12(3), pages 1-33, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schaeffer, Michiel & Gohar, Laila & Kriegler, Elmar & Lowe, Jason & Riahi, Keywan & van Vuuren, Detlef, 2015. "Mid- and long-term climate projections for fragmented and delayed-action scenarios," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 257-268.
    2. Malone, Thomas C. & DiGiacomo, Paul M. & Gonçalves, Emanuel & Knap, Anthony H. & Talaue-McManus, Liana & de Mora, Stephen, 2014. "A global ocean observing system framework for sustainable development," Marine Policy, Elsevier, vol. 43(C), pages 262-272.
    3. Bai, Lujian & Wang, Shusheng, 2019. "Definition of new thermal climate zones for building energy efficiency response to the climate change during the past decades in China," Energy, Elsevier, vol. 170(C), pages 709-719.
    4. Soheil Shayegh & Johannes Emmerling & Massimo Tavoni, 2022. "International Migration Projections across Skill Levels in the Shared Socioeconomic Pathways," Sustainability, MDPI, vol. 14(8), pages 1-33, April.
    5. Nicholas Stern, 2013. "The Structure of Economic Modeling of the Potential Impacts of Climate Change: Grafting Gross Underestimation of Risk onto Already Narrow Science Models," Journal of Economic Literature, American Economic Association, vol. 51(3), pages 838-859, September.
    6. Siriporn Supratid & Thannob Aribarg & Seree Supharatid, 2017. "An Integration of Stationary Wavelet Transform and Nonlinear Autoregressive Neural Network with Exogenous Input for Baseline and Future Forecasting of Reservoir Inflow," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(12), pages 4023-4043, September.
    7. Bell, Kendon & Zilberman, David, 2016. "The potential for renewable fuels under greenhouse gas pricing: The case of sugarcane in Brazil," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt03h2850w, Department of Agricultural & Resource Economics, UC Berkeley.
    8. Kirsten Halsnæs & Lisa Bay & Mads Lykke Dømgaard & Per Skougaard Kaspersen & Morten Andreas Dahl Larsen, 2020. "Accelerating Climate Service Development for Renewable Energy, Finance and Cities," Sustainability, MDPI, vol. 12(18), pages 1-18, September.
    9. Tao Li & Olivyn Angeles & Ando Radanielson & Manuel Marcaida & Emmali Manalo, 2015. "Drought stress impacts of climate change on rainfed rice in South Asia," Climatic Change, Springer, vol. 133(4), pages 709-720, December.
    10. Soma Sarkar & Vinay Gangare & Poonam Singh & Ramesh C. Dhiman, 2019. "Shift in Potential Malaria Transmission Areas in India, Using the Fuzzy-Based Climate Suitability Malaria Transmission (FCSMT) Model under Changing Climatic Conditions," IJERPH, MDPI, vol. 16(18), pages 1-16, September.
    11. Evangelos Grigoroudis & Vassilis S. Kouikoglou & Yannis A. Phillis & Fotis D. Kanellos, 2021. "Energy sustainability: a definition and assessment model," Operational Research, Springer, vol. 21(3), pages 1845-1885, September.
    12. Electra V. Petracou & Anastasios Xepapadeas & Athanasios N. Yannacopoulos, 2022. "Decision Making Under Model Uncertainty: Fréchet–Wasserstein Mean Preferences," Management Science, INFORMS, vol. 68(2), pages 1195-1211, February.
    13. Grundy, Michael J. & Bryan, Brett A. & Nolan, Martin & Battaglia, Michael & Hatfield-Dodds, Steve & Connor, Jeffery D. & Keating, Brian A., 2016. "Scenarios for Australian agricultural production and land use to 2050," Agricultural Systems, Elsevier, vol. 142(C), pages 70-83.
    14. Francisco Estrada & Richard S. J. Tol, 2015. "Toward Impact Functions For Stochastic Climate Change," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 6(04), pages 1-13, November.
    15. Chunbo Chen & Chi Zhang, 2017. "Projecting the CO 2 and Climatic Change Effects on the Net Primary Productivity of the Urban Ecosystems in Phoenix, AZ in the 21st Century under Multiple RCP (Representative Concentration Pathway) Sce," Sustainability, MDPI, vol. 9(8), pages 1-20, August.
    16. Kang, Hyunwoo & Sridhar, Venkataramana & Mills, Bradford F. & Hession, W. Cully & Ogejo, Jactone A., 2019. "Economy-wide climate change impacts on green water droughts based on the hydrologic simulations," Agricultural Systems, Elsevier, vol. 171(C), pages 76-88.
    17. Tangzhe Nie & Zhongxue Zhang & Zhijuan Qi & Peng Chen & Zhongyi Sun & Xingchao Liu, 2019. "Characterizing Spatiotemporal Dynamics of CH 4 Fluxes from Rice Paddies of Cold Region in Heilongjiang Province under Climate Change," IJERPH, MDPI, vol. 16(5), pages 1-21, February.
    18. David Rodziewicz & Christopher J. Amante & Jacob Dice & Eugene Wahl, 2022. "Housing market impairment from future sea-level rise inundation," Environment Systems and Decisions, Springer, vol. 42(4), pages 637-656, December.
    19. Brilé Anderson & Thomas Bernauer & Aya Kachi, 2019. "Does international pooling of authority affect the perceived legitimacy of global governance?," The Review of International Organizations, Springer, vol. 14(4), pages 661-683, December.
    20. Amber Wright & Mark Schwartz & Robert Hijmans & H. Bradley Shaffer, 2016. "Advances in climate models from CMIP3 to CMIP5 do not change predictions of future habitat suitability for California reptiles and amphibians," Climatic Change, Springer, vol. 134(4), pages 579-591, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:12:y:2015:i:9:p:11254-11268:d:55527. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.