IDEAS home Printed from https://ideas.repec.org/a/gam/jforec/v3y2021i2p19-302d540242.html
   My bibliography  Save this article

Building Heat Demand Forecasting by Training a Common Machine Learning Model with Physics-Based Simulator

Author

Listed:
  • Lotta Kannari

    (VTT Technical Research Centre of Finland, 02044 VTT Espoo, Finland)

  • Jussi Kiljander

    (VTT Technical Research Centre of Finland, 02044 VTT Espoo, Finland)

  • Kalevi Piira

    (VTT Technical Research Centre of Finland, 02044 VTT Espoo, Finland)

  • Jouko Piippo

    (VTT Technical Research Centre of Finland, 02044 VTT Espoo, Finland)

  • Pekka Koponen

    (VTT Technical Research Centre of Finland, 02044 VTT Espoo, Finland)

Abstract

Accurate short-term forecasts of building energy consumption are necessary for profitable demand response. Short-term forecasting methods can be roughly classified into physics-based modelling and data-based modelling. Both of these approaches have their advantages and disadvantages and it would be therefore ideal to combine them. This paper proposes a novel approach that allows us to combine the best parts of physics-based modelling and machine learning while avoiding many of their drawbacks. A key idea in the approach is to provide a variety of building parameters as input for an Artificial Neural Network (ANN) and train the model with data from a large group of simulated buildings. The hypothesis is that this forces the ANN model to learn the underlying simulation model-based physics, and thus enables the ANN model to be used in place of the simulator. The advantages of this type of model is the combination of robustness and accuracy from a high-detail physics-based model with the inference speed, ease of deployment, and support for gradient based optimization provided by the ANN model. To evaluate the approach, an ANN model was developed and trained with simulated data from 900–11,700 buildings, including equal distribution of office buildings, apartment buildings, and detached houses. The performance of the ANN model was evaluated with a test set consisting of 60 buildings (20 buildings for each category). The normalized root mean square errors (NRMSE) were on average 0.050, 0.026, 0.052 for apartment buildings, office buildings, and detached houses, respectively. The results show that the model was able to approximate the simulator with good accuracy also outside of the training data distribution and generalize to new buildings in new geographical locations without any building specific heat demand data.

Suggested Citation

  • Lotta Kannari & Jussi Kiljander & Kalevi Piira & Jouko Piippo & Pekka Koponen, 2021. "Building Heat Demand Forecasting by Training a Common Machine Learning Model with Physics-Based Simulator," Forecasting, MDPI, vol. 3(2), pages 1-13, April.
  • Handle: RePEc:gam:jforec:v:3:y:2021:i:2:p:19-302:d:540242
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-9394/3/2/19/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-9394/3/2/19/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Harish, V.S.K.V. & Kumar, Arun, 2016. "A review on modeling and simulation of building energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1272-1292.
    2. Tuukka Salmi & Jussi Kiljander & Daniel Pakkala, 2020. "Stacked Boosters Network Architecture for Short-Term Load Forecasting in Buildings," Energies, MDPI, vol. 13(9), pages 1-15, May.
    3. Fang, Tingting & Lahdelma, Risto, 2016. "Evaluation of a multiple linear regression model and SARIMA model in forecasting heat demand for district heating system," Applied Energy, Elsevier, vol. 179(C), pages 544-552.
    4. Li, Qiong & Meng, Qinglin & Cai, Jiejin & Yoshino, Hiroshi & Mochida, Akashi, 2009. "Applying support vector machine to predict hourly cooling load in the building," Applied Energy, Elsevier, vol. 86(10), pages 2249-2256, October.
    5. Amasyali, Kadir & El-Gohary, Nora M., 2018. "A review of data-driven building energy consumption prediction studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1192-1205.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alessandro Niccolai & Seyedamir Orooji & Andrea Matteri & Emanuele Ogliari & Sonia Leva, 2022. "Irradiance Nowcasting by Means of Deep-Learning Analysis of Infrared Images," Forecasting, MDPI, vol. 4(1), pages 1-11, March.
    2. Triebs, Merlin Sebastian & Tsatsaronis, George, 2022. "From heat demand to heat supply: How to obtain more accurate feed-in time series for district heating systems," Applied Energy, Elsevier, vol. 311(C).
    3. Alexander J. Bogensperger & Yann Fabel & Joachim Ferstl, 2022. "Accelerating Energy-Economic Simulation Models via Machine Learning-Based Emulation and Time Series Aggregation," Energies, MDPI, vol. 15(3), pages 1-42, February.
    4. Kalevi Piira & Julia Kantorovitch & Lotta Kannari & Jouko Piippo & Nam Vu Hoang, 2022. "Decision Support Tool to Enable Real-Time Data-Driven Building Energy Retrofitting Design," Energies, MDPI, vol. 15(15), pages 1-17, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "A novel improved model for building energy consumption prediction based on model integration," Applied Energy, Elsevier, vol. 262(C).
    2. Pallonetto, Fabiano & De Rosa, Mattia & D’Ettorre, Francesco & Finn, Donal P., 2020. "On the assessment and control optimisation of demand response programs in residential buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    3. Jinrong Wu & Su Nguyen & Damminda Alahakoon & Daswin De Silva & Nishan Mills & Prabod Rathnayaka & Harsha Moraliyage & Andrew Jennings, 2024. "A Comparative Analysis of Machine Learning-Based Energy Baseline Models across Multiple Building Types," Energies, MDPI, vol. 17(6), pages 1-18, March.
    4. Tian, Shen & Shao, Shuangquan & Liu, Bin, 2019. "Investigation on transient energy consumption of cold storages: Modeling and a case study," Energy, Elsevier, vol. 180(C), pages 1-9.
    5. Muideen Adegoke & Alaka Hafiz & Saheed Ajayi & Razak Olu-Ajayi, 2022. "Application of Multilayer Extreme Learning Machine for Efficient Building Energy Prediction," Energies, MDPI, vol. 15(24), pages 1-21, December.
    6. Gautham Krishnadas & Aristides Kiprakis, 2020. "A Machine Learning Pipeline for Demand Response Capacity Scheduling," Energies, MDPI, vol. 13(7), pages 1-25, April.
    7. Toroghi, Shahaboddin H. & Oliver, Matthew E., 2019. "Framework for estimation of the direct rebound effect for residential photovoltaic systems," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    8. Milen Balbis-Morejón & Juan J. Cabello-Eras & Javier M. Rey-Hernández & Francisco J. Rey-Martínez, 2021. "Energy Evaluation and Energy Savings Analysis with the 2 Selection of AC Systems in an Educational Building," Sustainability, MDPI, vol. 13(14), pages 1-10, July.
    9. Afroz, Zakia & Shafiullah, GM & Urmee, Tania & Higgins, Gary, 2018. "Modeling techniques used in building HVAC control systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 64-84.
    10. Abdulrahman Alanezi & Kevin P. Hallinan & Rodwan Elhashmi, 2021. "Using Smart-WiFi Thermostat Data to Improve Prediction of Residential Energy Consumption and Estimation of Savings," Energies, MDPI, vol. 14(1), pages 1-16, January.
    11. Kapp, Sean & Choi, Jun-Ki & Hong, Taehoon, 2023. "Predicting industrial building energy consumption with statistical and machine-learning models informed by physical system parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    12. Zhang, Xiang & Rasmussen, Christoffer & Saelens, Dirk & Roels, Staf, 2022. "Time-dependent solar aperture estimation of a building: Comparing grey-box and white-box approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    13. Venkatraj, V. & Dixit, M.K., 2022. "Challenges in implementing data-driven approaches for building life cycle energy assessment: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    14. Lara Ramadan & Isam Shahrour & Hussein Mroueh & Fadi Hage Chehade, 2021. "Use of Machine Learning Methods for Indoor Temperature Forecasting," Future Internet, MDPI, vol. 13(10), pages 1-18, September.
    15. Wang, Chendong & Yuan, Jianjuan & Zhang, Ji & Deng, Na & Zhou, Zhihua & Gao, Feng, 2020. "Multi-criteria comprehensive study on predictive algorithm of heating energy consumption of district heating station based on timeseries processing," Energy, Elsevier, vol. 202(C).
    16. Gao, Zhikun & Yu, Junqi & Zhao, Anjun & Hu, Qun & Yang, Siyuan, 2022. "A hybrid method of cooling load forecasting for large commercial building based on extreme learning machine," Energy, Elsevier, vol. 238(PC).
    17. Zhong, Hai & Wang, Jiajun & Jia, Hongjie & Mu, Yunfei & Lv, Shilei, 2019. "Vector field-based support vector regression for building energy consumption prediction," Applied Energy, Elsevier, vol. 242(C), pages 403-414.
    18. Grillone, Benedetto & Danov, Stoyan & Sumper, Andreas & Cipriano, Jordi & Mor, Gerard, 2020. "A review of deterministic and data-driven methods to quantify energy efficiency savings and to predict retrofitting scenarios in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    19. Li, Xinyi & Yao, Runming, 2020. "A machine-learning-based approach to predict residential annual space heating and cooling loads considering occupant behaviour," Energy, Elsevier, vol. 212(C).
    20. Ahlrichs, Jakob & Rockstuhl, Sebastian & Tränkler, Timm & Wenninger, Simon, 2020. "The impact of political instruments on building energy retrofits: A risk-integrated thermal Energy Hub approach," Energy Policy, Elsevier, vol. 147(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jforec:v:3:y:2021:i:2:p:19-302:d:540242. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.