IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i3p214-d65994.html
   My bibliography  Save this article

Application of Breathing Architectural Members to the Natural Ventilation of a Passive Solar House

Author

Listed:
  • Kyung-Soon Park

    (Department of Building Systems Engineering, Dong-Eui University, Busan 47340, Korea)

  • Sang-Woo Kim

    (Department of Architecture, Pusan National University, Busan 46241, Korea)

  • Seong-Hwan Yoon

    (Department of Architecture, Pusan National University, Busan 46241, Korea)

Abstract

The efficient operation of a passive solar house requires an efficient ventilation system to prevent the loss of energy and provide the required ventilation rates. This paper proposes the use of “breathing architectural members” (BAMs) as passive natural ventilation devices to achieve much improved ventilation and insulation performance compared to mechanical ventilation. Considering the importance of evaluating the ventilation and insulation performances of the members, we also propose numerical models for predicting the heat and air movements afforded by the members. The numerical model was validated by comparison with experimental results. The effectiveness of the BAMs was also verified by installation in houses located in an area with warm climate. For this purpose, chamber experiments were performed using samples of the BAMs, as well as numerical simulations to assess natural ventilation and heat load. The main findings of the study are as follows: (1) the one-dimensional chamber experiments confirmed the validity of the numerical models for predicting the heat and air movements afforded by the BAMs. Comparison of the experimental and calculated values for the temperature of air that flowed into the room from outside revealed a difference of less than 5%; (2) observations of the case studies in which BAMs were installed in the ceilings and exterior walls of Tokyo model houses revealed good annual ventilation and energy-saving effects. When BAMs with an opening area per unit area of A = 0.002 m 2 /m 2 were applied to three surfaces, the required ventilation rate was 0.5 ACH (air changes per hour), and this was achieved consistently. Compared to a house with general insulation and conventional mechanical ventilation, heating load was reduced by 15.3%–40.2% depending on the BAM installation points and the differing areas of the house models.

Suggested Citation

  • Kyung-Soon Park & Sang-Woo Kim & Seong-Hwan Yoon, 2016. "Application of Breathing Architectural Members to the Natural Ventilation of a Passive Solar House," Energies, MDPI, vol. 9(3), pages 1-15, March.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:3:p:214-:d:65994
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/3/214/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/3/214/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Taylor, BJ & Imbabi, MS, 1998. "The application of dynamic insulation in buildings," Renewable Energy, Elsevier, vol. 15(1), pages 377-382.
    2. Imbabi, Mohammed Salah-Eldin, 2006. "Modular breathing panels for energy efficient, healthy building construction," Renewable Energy, Elsevier, vol. 31(5), pages 729-738.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karanafti, Aikaterina & Theodosiou, Theodoros & Tsikaloudaki, Katerina, 2022. "Assessment of buildings’ dynamic thermal insulation technologies-A review," Applied Energy, Elsevier, vol. 326(C).
    2. Kimber, Mark & Clark, William W. & Schaefer, Laura, 2014. "Conceptual analysis and design of a partitioned multifunctional smart insulation," Applied Energy, Elsevier, vol. 114(C), pages 310-319.
    3. Yang, Yang & Chen, Sarula, 2022. "Thermal insulation solutions for opaque envelope of low-energy buildings: A systematic review of methods and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    4. Kishore, Ravi Anant & Bianchi, Marcus V.A. & Booten, Chuck & Vidal, Judith & Jackson, Roderick, 2021. "Enhancing building energy performance by effectively using phase change material and dynamic insulation in walls," Applied Energy, Elsevier, vol. 283(C).
    5. Massaguer Colomer, Albert & Massaguer, Eduard & Pujol, Toni & Comamala, Martí & Montoro, Lino & González, J.R., 2015. "Electrically tunable thermal conductivity in thermoelectric materials: Active and passive control," Applied Energy, Elsevier, vol. 154(C), pages 709-717.
    6. Forrest Meggers & Luca Baldini & Hansjürg Leibundgut, 2012. "An Innovative Use of Renewable Ground Heat for Insulation in Low Exergy Building Systems," Energies, MDPI, vol. 5(8), pages 1-18, August.
    7. Zhang, Chong & Wang, Jinbo & Li, Liao & Gang, Wenjie, 2019. "Dynamic thermal performance and parametric analysis of a heat recovery building envelope based on air-permeable porous materials," Energy, Elsevier, vol. 189(C).
    8. Zeng, Zhaoyun & Augenbroe, Godfried & Chen, Jianli, 2022. "Realization of bi-level optimization of adaptive building envelope with a finite-difference model featuring short execution time and versatility," Energy, Elsevier, vol. 243(C).
    9. Stefano Lazzari & Michele Celli & Antonio Barletta & Pedro Vayssière Brandão, 2023. "Unstable Convection in a Vertical Double–Layer Porous Slab," Energies, MDPI, vol. 16(13), pages 1-10, June.
    10. Loonen, R.C.G.M. & Trčka, M. & Cóstola, D. & Hensen, J.L.M., 2013. "Climate adaptive building shells: State-of-the-art and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 483-493.
    11. Zhang, Chong & Gang, Wenjie & Xu, Xinhua & Li, Liao & Wang, Jinbo, 2019. "Modelling, experimental test, and design of an active air permeable wall by utilizing the low-grade exhaust air," Applied Energy, Elsevier, vol. 240(C), pages 730-743.
    12. Miren Juaristi & Thaleia Konstantinou & Tomás Gómez-Acebo & Aurora Monge-Barrio, 2020. "Development and Validation of a Roadmap to Assist the Performance-Based Early-Stage Design Process of Adaptive Opaque Facades," Sustainability, MDPI, vol. 12(23), pages 1-27, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:3:p:214-:d:65994. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.