IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v8y2015i7p6641-6657d51868.html
   My bibliography  Save this article

Proof of Concept of an Irradiance Estimation System for Reconfigurable Photovoltaic Arrays

Author

Listed:
  • Vincenzo Li Vigni

    (Department of Energy, Information Engineering and Mathematical Models (DEIM), University of Palermo, Viale delle Scienze, Edificio 9, Palermo 90128, Italy)

  • Damiano La Manna

    (Department of Energy, Information Engineering and Mathematical Models (DEIM), University of Palermo, Viale delle Scienze, Edificio 9, Palermo 90128, Italy)

  • Eleonora Riva Sanseverino

    (Department of Energy, Information Engineering and Mathematical Models (DEIM), University of Palermo, Viale delle Scienze, Edificio 9, Palermo 90128, Italy)

  • Vincenzo Di Dio

    (Department of Energy, Information Engineering and Mathematical Models (DEIM), University of Palermo, Viale delle Scienze, Edificio 9, Palermo 90128, Italy)

  • Pietro Romano

    (Department of Energy, Information Engineering and Mathematical Models (DEIM), University of Palermo, Viale delle Scienze, Edificio 9, Palermo 90128, Italy)

  • Pietro Di Buono

    (Department of Energy, Information Engineering and Mathematical Models (DEIM), University of Palermo, Viale delle Scienze, Edificio 9, Palermo 90128, Italy)

  • Maurizio Pinto

    (Department of Energy, Information Engineering and Mathematical Models (DEIM), University of Palermo, Viale delle Scienze, Edificio 9, Palermo 90128, Italy)

  • Rosario Miceli

    (Department of Energy, Information Engineering and Mathematical Models (DEIM), University of Palermo, Viale delle Scienze, Edificio 9, Palermo 90128, Italy)

  • Costantino Giaconia

    (Department of Energy, Information Engineering and Mathematical Models (DEIM), University of Palermo, Viale delle Scienze, Edificio 9, Palermo 90128, Italy)

Abstract

In order to reduce the mismatch effect caused by non-uniform shadows in PV arrays, reconfigurable interconnections approaches have been recently proposed in the literature. These systems usually require the knowledge of the solar radiation affecting every solar module. The aim of this work is to evaluate the effectiveness of three irradiance estimation approaches in order to define which can be well suited for reconfigurable PV arrays. It is presented a real-time solar irradiance estimation device (IrradEst), implementing the three different estimation methods. The proposed system is based on mathematical models of PV modules enabling to estimate irradiation values by sensing a combination of temperature, voltage and current of a PV module. Experimental results showed generally good agreement between the estimated irradiances and the measurements performed by a standard pyranometer taken as reference. Finally one of the three methods was selected as possible solution for a reconfigurable PV system.

Suggested Citation

  • Vincenzo Li Vigni & Damiano La Manna & Eleonora Riva Sanseverino & Vincenzo Di Dio & Pietro Romano & Pietro Di Buono & Maurizio Pinto & Rosario Miceli & Costantino Giaconia, 2015. "Proof of Concept of an Irradiance Estimation System for Reconfigurable Photovoltaic Arrays," Energies, MDPI, vol. 8(7), pages 1-17, June.
  • Handle: RePEc:gam:jeners:v:8:y:2015:i:7:p:6641-6657:d:51868
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/8/7/6641/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/8/7/6641/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ciulla, Giuseppina & Lo Brano, Valerio & Di Dio, Vincenzo & Cipriani, Giovanni, 2014. "A comparison of different one-diode models for the representation of I–V characteristic of a PV cell," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 684-696.
    2. Celik, Ali Naci & Acikgoz, NasIr, 2007. "Modelling and experimental verification of the operating current of mono-crystalline photovoltaic modules using four- and five-parameter models," Applied Energy, Elsevier, vol. 84(1), pages 1-15, January.
    3. Wang, Yaw-Juen & Hsu, Po-Chun, 2011. "An investigation on partial shading of PV modules with different connection configurations of PV cells," Energy, Elsevier, vol. 36(5), pages 3069-3078.
    4. Bonanno, F. & Capizzi, G. & Graditi, G. & Napoli, C. & Tina, G.M., 2012. "A radial basis function neural network based approach for the electrical characteristics estimation of a photovoltaic module," Applied Energy, Elsevier, vol. 97(C), pages 956-961.
    5. Mohammadmehdi Seyedmahmoudian & Saad Mekhilef & Rasoul Rahmani & Rubiyah Yusof & Ehsan Taslimi Renani, 2013. "Analytical Modeling of Partially Shaded Photovoltaic Systems," Energies, MDPI, vol. 6(1), pages 1-17, January.
    6. So, Jung Hun & Jung, Young Seok & Yu, Gwon Jong & Choi, Ju Yeop & Choi, Jae Ho, 2007. "Performance results and analysis of 3kW grid-connected PV systems," Renewable Energy, Elsevier, vol. 32(11), pages 1858-1872.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniel Gonzalez Montoya & Juan David Bastidas-Rodriguez & Luz Adriana Trejos-Grisales & Carlos Andres Ramos-Paja & Giovanni Petrone & Giovanni Spagnuolo, 2018. "A Procedure for Modeling Photovoltaic Arrays under Any Configuration and Shading Conditions," Energies, MDPI, vol. 11(4), pages 1-17, March.
    2. Byungki Kim & Hwa-Pyeong Park, 2023. "Non-Isolated Current-Fed Series Resonant Converter with Hybrid Control Algorithms for DC Microgrid," Energies, MDPI, vol. 16(16), pages 1-16, August.
    3. Yadav, Vinod Kumar & Yadav, Abhishek & Yadav, Ranjana & Mittal, Aaradhya & Wazir, Nadeem Hussain & Gupta, Shubham & Pachauri, Rupendra Kumar & Ghosh, Santosh, 2022. "A novel reconfiguration technique for improvement of PV reliability," Renewable Energy, Elsevier, vol. 182(C), pages 508-520.
    4. Ángel Gómez-Moreno & Pedro José Casanova-Peláez & José Manuel Palomar-Carnicero & Fernando Cruz-Peragón, 2016. "Modeling and Experimental Validation of a Low-Cost Radiation Sensor Based on the Photovoltaic Effect for Building Applications," Energies, MDPI, vol. 9(11), pages 1-16, November.
    5. Polo, J. & Fernandez-Neira, W.G. & Alonso-García, M.C., 2017. "On the use of reference modules as irradiance sensor for monitoring and modelling rooftop PV systems," Renewable Energy, Elsevier, vol. 106(C), pages 186-191.
    6. Arunesh Kumar Singh & Tabish Tariq & Mohammad F. Ahmer & Gulshan Sharma & Pitshou N. Bokoro & Thokozani Shongwe, 2022. "Intelligent Control of Irrigation Systems Using Fuzzy Logic Controller," Energies, MDPI, vol. 15(19), pages 1-19, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Tao & Yang, Hongxing & Lu, Lin, 2014. "Solar photovoltaic system modeling and performance prediction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 304-315.
    2. Jena, Debashisha & Ramana, Vanjari Venkata, 2015. "Modeling of photovoltaic system for uniform and non-uniform irradiance: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 400-417.
    3. Hasan, M.A. & Parida, S.K., 2016. "An overview of solar photovoltaic panel modeling based on analytical and experimental viewpoint," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 75-83.
    4. Humada, Ali M. & Hojabri, Mojgan & Mekhilef, Saad & Hamada, Hussein M., 2016. "Solar cell parameters extraction based on single and double-diode models: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 494-509.
    5. Piliougine, Michel & Elizondo, David & Mora-López, Llanos & Sidrach-de-Cardona, Mariano, 2013. "Multilayer perceptron applied to the estimation of the influence of the solar spectral distribution on thin-film photovoltaic modules," Applied Energy, Elsevier, vol. 112(C), pages 610-617.
    6. Lo Brano, Valerio & Ciulla, Giuseppina, 2013. "An efficient analytical approach for obtaining a five parameters model of photovoltaic modules using only reference data," Applied Energy, Elsevier, vol. 111(C), pages 894-903.
    7. Singh, Rashmi & Sharma, Madhu & Rawat, Rahul & Banerjee, Chandan, 2018. "An assessment of series resistance estimation techniques for different silicon based SPV modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 199-216.
    8. Kichou, Sofiane & Silvestre, Santiago & Guglielminotti, Letizia & Mora-López, Llanos & Muñoz-Cerón, Emilio, 2016. "Comparison of two PV array models for the simulation of PV systems using five different algorithms for the parameters identification," Renewable Energy, Elsevier, vol. 99(C), pages 270-279.
    9. Chin, Vun Jack & Salam, Zainal & Ishaque, Kashif, 2015. "Cell modelling and model parameters estimation techniques for photovoltaic simulator application: A review," Applied Energy, Elsevier, vol. 154(C), pages 500-519.
    10. Emanuele Lattanzi & Matteo Dromedari & Valerio Freschi & Alessandro Bogliolo, 2017. "Tuning the Complexity of Photovoltaic Array Models to Meet Real-time Constraints of Embedded Energy Emulators," Energies, MDPI, vol. 10(3), pages 1-17, February.
    11. Manoharan Premkumar & Umashankar Subramaniam & Thanikanti Sudhakar Babu & Rajvikram Madurai Elavarasan & Lucian Mihet-Popa, 2020. "Evaluation of Mathematical Model to Characterize the Performance of Conventional and Hybrid PV Array Topologies under Static and Dynamic Shading Patterns," Energies, MDPI, vol. 13(12), pages 1-37, June.
    12. Tuyen Nguyen-Duc & Huy Nguyen-Duc & Thinh Le-Viet & Hirotaka Takano, 2020. "Single-Diode Models of PV Modules: A Comparison of Conventional Approaches and Proposal of a Novel Model," Energies, MDPI, vol. 13(6), pages 1-22, March.
    13. Efstratios Batzelis, 2019. "Non-Iterative Methods for the Extraction of the Single-Diode Model Parameters of Photovoltaic Modules: A Review and Comparative Assessment," Energies, MDPI, vol. 12(3), pages 1-26, January.
    14. Gulkowski, Slawomir & Muñoz Diez, José Vicente & Aguilera Tejero, Jorge & Nofuentes, Gustavo, 2019. "Computational modeling and experimental analysis of heterojunction with intrinsic thin-layer photovoltaic module under different environmental conditions," Energy, Elsevier, vol. 172(C), pages 380-390.
    15. Luo, Yongqiang & Zhang, Ling & Wu, Jing & Liu, Zhongbing & Wu, Zhenghong & He, Xihua, 2017. "Dynamical simulation of building integrated photovoltaic thermoelectric wall system: Balancing calculation speed and accuracy," Applied Energy, Elsevier, vol. 204(C), pages 887-897.
    16. Su, Yan & Chan, Lai-Cheong & Shu, Lianjie & Tsui, Kwok-Leung, 2012. "Real-time prediction models for output power and efficiency of grid-connected solar photovoltaic systems," Applied Energy, Elsevier, vol. 93(C), pages 319-326.
    17. Roberts, Justo José & Mendiburu Zevallos, Andrés A. & Cassula, Agnelo Marotta, 2017. "Assessment of photovoltaic performance models for system simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1104-1123.
    18. Humada, Ali M. & Aaref, Ashty M. & Hamada, Hussein M. & Sulaiman, Mohd Herwan & Amin, Nowshad & Mekhilef, Saad, 2018. "Modeling and characterization of a grid-connected photovoltaic system under tropical climate conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2094-2105.
    19. Huang, Chao & Bensoussan, Alain & Edesess, Michael & Tsui, Kwok L., 2016. "Improvement in artificial neural network-based estimation of grid connected photovoltaic power output," Renewable Energy, Elsevier, vol. 97(C), pages 838-848.
    20. Athanasios I. Salamanis & Georgia Xanthopoulou & Napoleon Bezas & Christos Timplalexis & Angelina D. Bintoudi & Lampros Zyglakis & Apostolos C. Tsolakis & Dimosthenis Ioannidis & Dionysios Kehagias & , 2020. "Benchmark Comparison of Analytical, Data-Based and Hybrid Models for Multi-Step Short-Term Photovoltaic Power Generation Forecasting," Energies, MDPI, vol. 13(22), pages 1-31, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:8:y:2015:i:7:p:6641-6657:d:51868. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.