IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v8y2015i4p2742-2768d47988.html
   My bibliography  Save this article

High Step-Up 3-Phase Rectifier with Fly-Back Cells and Switched Capacitors for Small-Scaled Wind Generation Systems

Author

Listed:
  • Yi-Feng Wang

    (School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072, China
    These authors contributed equally to this work.)

  • Liang Yang

    (School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072, China)

  • Cheng-Shan Wang

    (School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072, China
    These authors contributed equally to this work.)

  • Wei Li

    (School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072, China)

  • Wei Qie

    (State Grid Tianjin Electric Power Company, Tianjin 300072, China)

  • Shi-Jie Tu

    (State Grid Jiangxi Electric Power Company Repair Branch, Jiangxi 330000, China)

Abstract

This paper proposes and discusses a novel AC/DC converter suitable for small-scaled wind power generation system applications. By introducing flyback cells into the three-phase single-switch Boost circuit, the proposed converter is designed as single-stage and has both rectification and high step-up power conversion functions. It is able to obtain high voltage gain at low input voltage level, and high efficiency, low total harmonic distortion (THD) at rated power. The inherent power factor correction (PFC) is also determined, and can reach 0.99. Besides, since no electrolytic capacitor is employed and high voltage gain is achieved, the converter can also collect weak power at low input voltage in combination with energy storage devices, and contribute to a better low-wind-speed/low-power performance. Finally, a 400 W prototype is built to verify the theoretical analysis, and its efficiency is 87.6%, while THD is 7.4% at rated power.

Suggested Citation

  • Yi-Feng Wang & Liang Yang & Cheng-Shan Wang & Wei Li & Wei Qie & Shi-Jie Tu, 2015. "High Step-Up 3-Phase Rectifier with Fly-Back Cells and Switched Capacitors for Small-Scaled Wind Generation Systems," Energies, MDPI, vol. 8(4), pages 1-27, April.
  • Handle: RePEc:gam:jeners:v:8:y:2015:i:4:p:2742-2768:d:47988
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/8/4/2742/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/8/4/2742/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cheng-Tao Tsai & Chih-Lung Shen & Jye-Chau Su, 2013. "A Power Supply System with ZVS and Current-Doubler Features for Hybrid Renewable Energy Conversion," Energies, MDPI, vol. 6(9), pages 1-20, September.
    2. Cheng-Tao Tsai & Chih-Lung Shen, 2012. "A High Step-Down Interleaved Buck Converter with Active-Clamp Circuits for Wind Turbines," Energies, MDPI, vol. 5(12), pages 1-21, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Juan-Guillermo Muñoz & Guillermo Gallo & Fabiola Angulo & Gustavo Osorio, 2018. "Slope Compensation Design for a Peak Current-Mode Controlled Boost-Flyback Converter," Energies, MDPI, vol. 11(11), pages 1-18, November.
    2. Tiara Freitas & Paulo Menegáz & Domingos Simonetti, 2015. "A New Application of the Multi-Resonant Zero-Current Switching Buck Converter: Analysis and Simulation in a PMSG Based WECS," Energies, MDPI, vol. 8(9), pages 1-20, September.
    3. Diego Calabrese & Gioacchino Tricarico & Elia Brescia & Giuseppe Leonardo Cascella & Vito Giuseppe Monopoli & Francesco Cupertino, 2020. "Variable Structure Control of a Small Ducted Wind Turbine in the Whole Wind Speed Range Using a Luenberger Observer," Energies, MDPI, vol. 13(18), pages 1-23, September.
    4. Cuidong Xu & Ka Wai Eric Cheng, 2015. "A Switched Capacitor Based AC/DC Resonant Converter for High Frequency AC Power Generation," Energies, MDPI, vol. 8(10), pages 1-19, September.
    5. Ming-Tse Kuo & Ming-Chang Tsou, 2016. "Novel Frequency Swapping Technique for Conducted Electromagnetic Interference Suppression in Power Converter Applications," Energies, MDPI, vol. 10(1), pages 1-23, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenzheng Xu & Nelson Hon Lung Chan & Siu Wing Or & Siu Lau Ho & Ka Wing Chan, 2017. "A New Control Method for a Bi-Directional Phase-Shift-Controlled DC-DC Converter with an Extended Load Range," Energies, MDPI, vol. 10(10), pages 1-17, October.
    2. Tiara Freitas & Paulo Menegáz & Domingos Simonetti, 2015. "A New Application of the Multi-Resonant Zero-Current Switching Buck Converter: Analysis and Simulation in a PMSG Based WECS," Energies, MDPI, vol. 8(9), pages 1-20, September.
    3. Aiswariya Sekar & Dhanasekaran Raghavan, 2015. "Implementation of Single Phase Soft Switched PFC Converter for Plug-in-Hybrid Electric Vehicles," Energies, MDPI, vol. 8(11), pages 1-16, November.
    4. Cheng-Tao Tsai & Chih-Lung Shen & Jye-Chau Su, 2013. "A Power Supply System with ZVS and Current-Doubler Features for Hybrid Renewable Energy Conversion," Energies, MDPI, vol. 6(9), pages 1-20, September.
    5. Shu-huai Zhang & Yi-feng Wang & Bo Chen & Fu-qiang Han & Qing-cui Wang, 2018. "Studies on a Hybrid Full-Bridge/Half-Bridge Bidirectional CLTC Multi-Resonant DC-DC Converter with a Digital Synchronous Rectification Strategy," Energies, MDPI, vol. 11(1), pages 1-22, January.
    6. Shu-Huai Zhang & Feng-Zhang Luo & Yi-Feng Wang & Jiang-Hua Liu & Yong-Peng He & Yue Dong, 2017. "Control Method Based on Demand Response Needs of Isolated Bus Regulation with Series-Resonant Converters for Residential Photovoltaic Systems," Energies, MDPI, vol. 10(6), pages 1-21, May.
    7. Shen, Chih-Lung & Ko, Yong-Xian, 2014. "Hybrid-input power supply with PFC (power factor corrector) and MPPT (maximum power point tracking) features for battery charging and HB-LED driving," Energy, Elsevier, vol. 72(C), pages 501-509.
    8. Chih-Lung Shen & Po-Chieh Chiu & Yan-Chi Lee, 2016. "Novel Interleaved Converter with Extra-High Voltage Gain to Process Low-Voltage Renewable-Energy Generation," Energies, MDPI, vol. 9(11), pages 1-12, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:8:y:2015:i:4:p:2742-2768:d:47988. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.