IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2016i1p24-d86241.html
   My bibliography  Save this article

Novel Frequency Swapping Technique for Conducted Electromagnetic Interference Suppression in Power Converter Applications

Author

Listed:
  • Ming-Tse Kuo

    (Department of Electrical Engineering, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Road, Da’an District, Taipei 106, Taiwan)

  • Ming-Chang Tsou

    (Leadtrend Technology Corporation, No. 1, Taiyuan 2nd St., Zhubei City, Hsinchu County 30288, Taiwan)

Abstract

Quasi-resonant flyback (QRF) converters have been widely applied as the main circuit topology in power converters because of their low cost and high efficiency. Conventional QRF converters tend to generate higher average conducted electromagnetic interference (EMI) in the low-frequency domain due to the switching noise generated by power switches, resulting in the fact they can exceed the EMI standards of the European Standard 55022 Class-B emission requirements. The presented paper develops a novel frequency swapping control method that spreads spectral energy to reduce the amplitude of sub-harmonics, thereby lowering average conducted EMI in the low-frequency domain. The proposed method is implemented in a control chip, which requires no extra circuit components and adds zero cost. The proposed control method is verified using a 24 W QRF converter. Experimental results reveals that conducted EMI has been reduced by approximately 13.24 dBμV at 498 kHz compared with a control method without the novel frequency swapping technique. Thus, the proposed method can effectively improve the flyback system to easily meet the CISPR 22/EN55022 standards.

Suggested Citation

  • Ming-Tse Kuo & Ming-Chang Tsou, 2016. "Novel Frequency Swapping Technique for Conducted Electromagnetic Interference Suppression in Power Converter Applications," Energies, MDPI, vol. 10(1), pages 1-23, December.
  • Handle: RePEc:gam:jeners:v:10:y:2016:i:1:p:24-:d:86241
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/1/24/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/1/24/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yi-Feng Wang & Liang Yang & Cheng-Shan Wang & Wei Li & Wei Qie & Shi-Jie Tu, 2015. "High Step-Up 3-Phase Rectifier with Fly-Back Cells and Switched Capacitors for Small-Scaled Wind Generation Systems," Energies, MDPI, vol. 8(4), pages 1-27, April.
    2. Ming-Tse Kuo & Ming-Chang Tsou, 2015. "Simulation of Standby Efficiency Improvement for a Line Level Control Resonant Converter Based on Solar Power Systems," Energies, MDPI, vol. 8(1), pages 1-18, January.
    3. Eliana Arango & Carlos Andres Ramos-Paja & Javier Calvente & Roberto Giral & Sergio Serna, 2012. "Asymmetrical Interleaved DC/DC Switching Converters for Photovoltaic and Fuel Cell Applications—Part 1: Circuit Generation, Analysis and Design," Energies, MDPI, vol. 5(11), pages 1-34, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juan-Guillermo Muñoz & Guillermo Gallo & Fabiola Angulo & Gustavo Osorio, 2018. "Slope Compensation Design for a Peak Current-Mode Controlled Boost-Flyback Converter," Energies, MDPI, vol. 11(11), pages 1-18, November.
    2. Jinhaeng Jang & Syam Kumar Pidaparthy & Byungcho Choi, 2015. "Current Mode Control for LLC Series Resonant DC-to-DC Converters," Energies, MDPI, vol. 8(6), pages 1-16, June.
    3. Hassan M. H. Farh & Mohd F. Othman & Ali M. Eltamaly & M. S. Al-Saud, 2018. "Maximum Power Extraction from a Partially Shaded PV System Using an Interleaved Boost Converter," Energies, MDPI, vol. 11(10), pages 1-18, September.
    4. Wenzheng Xu & Nelson Hon Lung Chan & Siu Wing Or & Siu Lau Ho & Ka Wing Chan, 2017. "A New Control Method for a Bi-Directional Phase-Shift-Controlled DC-DC Converter with an Extended Load Range," Energies, MDPI, vol. 10(10), pages 1-17, October.
    5. Tiara Freitas & Paulo Menegáz & Domingos Simonetti, 2015. "A New Application of the Multi-Resonant Zero-Current Switching Buck Converter: Analysis and Simulation in a PMSG Based WECS," Energies, MDPI, vol. 8(9), pages 1-20, September.
    6. Eliana Arango & Carlos Andres Ramos-Paja & Javier Calvente & Roberto Giral & Sergio Ignacio Serna-Garces, 2013. "Asymmetrical Interleaved DC/DC Switching Converters for Photovoltaic and Fuel Cell Applications—Part 2: Control-Oriented Models," Energies, MDPI, vol. 6(10), pages 1-27, October.
    7. Pablo Moreno-Torres & Marcos Blanco & Marcos Lafoz & Jaime R. Arribas, 2015. "Educational Project for the Teaching of Control of Electric Traction Drives," Energies, MDPI, vol. 8(2), pages 1-18, January.
    8. Alan Cruz Rojas & Guadalupe Lopez Lopez & J. F. Gomez-Aguilar & Victor M. Alvarado & Cinda Luz Sandoval Torres, 2017. "Control of the Air Supply Subsystem in a PEMFC with Balance of Plant Simulation," Sustainability, MDPI, vol. 9(1), pages 1-23, January.
    9. Jorge Nájera & Pablo Moreno-Torres & Marcos Lafoz & Rosa M. De Castro & Jaime R. Arribas, 2017. "Approach to Hybrid Energy Storage Systems Dimensioning for Urban Electric Buses Regarding Efficiency and Battery Aging," Energies, MDPI, vol. 10(11), pages 1-16, October.
    10. Diego Calabrese & Gioacchino Tricarico & Elia Brescia & Giuseppe Leonardo Cascella & Vito Giuseppe Monopoli & Francesco Cupertino, 2020. "Variable Structure Control of a Small Ducted Wind Turbine in the Whole Wind Speed Range Using a Luenberger Observer," Energies, MDPI, vol. 13(18), pages 1-23, September.
    11. Ching-Ming Lai & Ming-Ji Yang & Shih-Kun Liang, 2014. "A Zero Input Current Ripple ZVS/ZCS Boost Converter with Boundary-Mode Control," Energies, MDPI, vol. 7(10), pages 1-18, October.
    12. Juan R. Rodriguez-Rodríguez & Vicente Venegas-Rebollar & Edgar L. Moreno-Goytia, 2015. "Single DC-Sourced 9-level DC/AC Topology as Transformerless Power Interface for Renewable Sources," Energies, MDPI, vol. 8(2), pages 1-18, February.
    13. Cuidong Xu & Ka Wai Eric Cheng, 2015. "A Switched Capacitor Based AC/DC Resonant Converter for High Frequency AC Power Generation," Energies, MDPI, vol. 8(10), pages 1-19, September.
    14. Girish Ganesan Ramanathan & Naomitsu Urasaki, 2021. "Novel Interleaved High Gain Boost Converter Using Switched Capacitor," Energies, MDPI, vol. 14(23), pages 1-12, December.
    15. Gustavo Navarro & Marcos Blanco & Jorge Torres & Jorge Nájera & Álvaro Santiago & Miguel Santos-Herran & Dionisio Ramírez & Marcos Lafoz, 2021. "Dimensioning Methodology of an Energy Storage System Based on Supercapacitors for Grid Code Compliance of a Wave Power Plant," Energies, MDPI, vol. 14(4), pages 1-20, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2016:i:1:p:24-:d:86241. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.