IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v8y2014i1p111-132d43999.html
   My bibliography  Save this article

A New Energy-Absorbing Device for Motion Suppression in Deep-Sea Floating Platforms

Author

Listed:
  • Xiaohui Zeng

    (Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China)

  • Yang Yu

    (Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China)

  • Liang Zhang

    (Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China)

  • Qingquan Liu

    (Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China)

  • Han Wu

    (Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China)

Abstract

Deep-sea floating platforms are one of the most important large structures for ocean energy exploitation. A new energy-absorbing device named S-shaped Tuned Liquid Column Damper (TLCD) has been invented for the suppression of the horizontal motion and vertical in-plane rotation of a deep-sea floating platform. A conventional tuned liquid column damper has a U-shaped water tunnel to absorb the excessive energy of the main structure. The application of U-shaped dampers in deep-sea floating platforms is difficult due to the restriction of a large horizontal length. A novel S-shaped damper is proposed to retain the same amount of liquid using a shorter S-shaped tunnel. Theoretical and experimental works are conducted and prove that an S-shaped damper needs less than half the horizontal length to provide the same suppression as a U-shaped damper. A coupling calculation model is proposed and followed by the sensitivity analysis. The study demonstrates the applicability of the novel S-shaped damper for the motion suppression in deep-sea floating platforms.

Suggested Citation

  • Xiaohui Zeng & Yang Yu & Liang Zhang & Qingquan Liu & Han Wu, 2014. "A New Energy-Absorbing Device for Motion Suppression in Deep-Sea Floating Platforms," Energies, MDPI, vol. 8(1), pages 1-22, December.
  • Handle: RePEc:gam:jeners:v:8:y:2014:i:1:p:111-132:d:43999
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/8/1/111/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/8/1/111/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Arthur Pecher & Jens Peter Kofoed & Tommy Larsen, 2012. "Design Specifications for the Hanstholm WEPTOS Wave Energy Converter," Energies, MDPI, vol. 5(4), pages 1-17, April.
    2. Søren Christiansen & Thomas Bak & Torben Knudsen, 2013. "Damping Wind and Wave Loads on a Floating Wind Turbine," Energies, MDPI, vol. 6(8), pages 1-20, August.
    3. Kai-Wern Ng & Wei-Haur Lam & Khai-Ching Ng, 2013. "2002–2012: 10 Years of Research Progress in Horizontal-Axis Marine Current Turbines," Energies, MDPI, vol. 6(3), pages 1-30, March.
    4. Silvia Bozzi & Adrià Moreno Miquel & Alessandro Antonini & Giuseppe Passoni & Renata Archetti, 2013. "Modeling of a Point Absorber for Energy Conversion in Italian Seas," Energies, MDPI, vol. 6(6), pages 1-19, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Buckley, Tadhg & Watson, Phoebe & Cahill, Paul & Jaksic, Vesna & Pakrashi, Vikram, 2018. "Mitigating the structural vibrations of wind turbines using tuned liquid column damper considering soil-structure interaction," Renewable Energy, Elsevier, vol. 120(C), pages 322-341.
    2. Jianxing Yu & Zhenmian Li & Yang Yu & Shuai Hao & Yiqin Fu & Yupeng Cui & Lixin Xu & Han Wu, 2020. "Design and Performance Assessment of Multi-Use Offshore Tension Leg Platform Equipped with an Embedded Wave Energy Converter System," Energies, MDPI, vol. 13(15), pages 1-21, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Al Shami, Elie & Wang, Zhun & Wang, Xu, 2021. "Non-linear dynamic simulations of two-body wave energy converters via identification of viscous drag coefficients of different shapes of the submerged body based on numerical wave tank CFD simulation," Renewable Energy, Elsevier, vol. 179(C), pages 983-997.
    2. Qian, Peng & Feng, Bo & Liu, Hao & Tian, Xiange & Si, Yulin & Zhang, Dahai, 2019. "Review on configuration and control methods of tidal current turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 125-139.
    3. Fairley, I. & Masters, I. & Karunarathna, H., 2015. "The cumulative impact of tidal stream turbine arrays on sediment transport in the Pentland Firth," Renewable Energy, Elsevier, vol. 80(C), pages 755-769.
    4. Rahimi, Amir & Rezaei, Saeed & Parvizian, Jamshid & Mansourzadeh, Shahriar & Lund, Jorrid & Hssini, Radhouane & Düster, Alexander, 2022. "Numerical and experimental study of the hydrodynamic coefficients and power absorption of a two-body point absorber wave energy converter," Renewable Energy, Elsevier, vol. 201(P1), pages 181-193.
    5. Cai, Qinlin & Zhu, Songye, 2021. "Applying double-mass pendulum oscillator with tunable ultra-low frequency in wave energy converters," Applied Energy, Elsevier, vol. 298(C).
    6. Rafael Guardeño & Agustín Consegliere & Manuel J. López, 2018. "A Study about Performance and Robustness of Model Predictive Controllers in a WEC System," Energies, MDPI, vol. 11(10), pages 1-23, October.
    7. George Lavidas & Vengatesan Venugopal, 2018. "Energy Production Benefits by Wind and Wave Energies for the Autonomous System of Crete," Energies, MDPI, vol. 11(10), pages 1-14, October.
    8. Joannes Olondriz & Iker Elorza & Josu Jugo & Santi Alonso-Quesada & Aron Pujana-Arrese, 2018. "An Advanced Control Technique for Floating Offshore Wind Turbines Based on More Compact Barge Platforms," Energies, MDPI, vol. 11(5), pages 1-14, May.
    9. Lavidas, George & Venugopal, Vengatesan, 2017. "A 35 year high-resolution wave atlas for nearshore energy production and economics at the Aegean Sea," Renewable Energy, Elsevier, vol. 103(C), pages 401-417.
    10. Bozzi, Silvia & Giassi, Marianna & Moreno Miquel, Adrià & Antonini, Alessandro & Bizzozero, Federica & Gruosso, Giambattista & Archetti, Renata & Passoni, Giuseppe, 2017. "Wave energy farm design in real wave climates: the Italian offshore," Energy, Elsevier, vol. 122(C), pages 378-389.
    11. Choupin, O. & Têtu, A. & Del Río-Gamero, B. & Ferri, F. & Kofoed, JP., 2022. "Premises for an annual energy production and capacity factor improvement towards a few optimised wave energy converters configurations and resources pairs," Applied Energy, Elsevier, vol. 312(C).
    12. Piscopo, V. & Benassai, G. & Della Morte, R. & Scamardella, A., 2020. "Towards a unified formulation of time and frequency-domain models for point absorbers with single and double-body configuration," Renewable Energy, Elsevier, vol. 147(P1), pages 1525-1539.
    13. Mohd Nasir Ayob & Valeria Castellucci & Johan Abrahamsson & Rafael Waters, 2019. "A Remotely Controlled Sea Level Compensation System for Wave Energy Converters," Energies, MDPI, vol. 12(10), pages 1-16, May.
    14. Ilias Gavriilidis & Yuner Huang, 2021. "Finite Element Analysis of Tidal Turbine Blade Subjected to Impact Loads from Sea Animals," Energies, MDPI, vol. 14(21), pages 1-20, November.
    15. Goupee, Andrew J. & Kimball, Richard W. & Dagher, Habib J., 2017. "Experimental observations of active blade pitch and generator control influence on floating wind turbine response," Renewable Energy, Elsevier, vol. 104(C), pages 9-19.
    16. Bozzi, Silvia & Archetti, Renata & Passoni, Giuseppe, 2014. "Wave electricity production in Italian offshore: A preliminary investigation," Renewable Energy, Elsevier, vol. 62(C), pages 407-416.
    17. Han, Chenlu & Nagamune, Ryozo, 2020. "Platform position control of floating wind turbines using aerodynamic force," Renewable Energy, Elsevier, vol. 151(C), pages 896-907.
    18. Gianmaria Giannini & Paulo Rosa-Santos & Victor Ramos & Francisco Taveira-Pinto, 2020. "On the Development of an Offshore Version of the CECO Wave Energy Converter," Energies, MDPI, vol. 13(5), pages 1-24, February.
    19. Mourad Nachtane & Mostapha Tarfaoui & Karim Hilmi & Dennoun Saifaoui & Ahmed El Moumen, 2018. "Assessment of Energy Production Potential from Tidal Stream Currents in Morocco," Energies, MDPI, vol. 11(5), pages 1-17, April.
    20. Sang Lee & Matthew Churchfield & Frederick Driscoll & Senu Sirnivas & Jason Jonkman & Patrick Moriarty & Bjόrn Skaare & Finn Gunnar Nielsen & Erik Byklum, 2018. "Load Estimation of Offshore Wind Turbines," Energies, MDPI, vol. 11(7), pages 1-15, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:8:y:2014:i:1:p:111-132:d:43999. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.