IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v6y2013i2p1023-1049d23677.html
   My bibliography  Save this article

Recycling of Waste Engine Oils Using a New Washing Agent

Author

Listed:
  • Ihsan Hamawand

    (Faculty of Engineering and Surveying, National Centre for Engineering in Agriculture, University of Southern Queensland, Toowoomba 4350, QLD, Australia)

  • Talal Yusaf

    (Faculty of Engineering and Surveying, National Centre for Engineering in Agriculture, University of Southern Queensland, Toowoomba 4350, QLD, Australia)

  • Sardasht Rafat

    (Faculty of Engineering and Science, University of Koya, Koya KOY45 AB64, Iraq)

Abstract

This paper addresses recycling of waste engine oils treated using acetic acid. A recycling process was developed which eventually led to comparable results with some of the conventional methods. This gives the recycled oil the potential to be reused in cars’ engines after adding the required additives. The advantage of using the acetic acid is that it does not react or only reacts slightly with base oils. The recycling process takes place at room temperature. It has been shown that base oils and oils’ additives are slightly affected by the acetic acid. Upon adding 0.8 vol% of acetic acid to the used oil, two layers were separated, a transparent dark red colored oil and a black dark sludge at the bottom of the container. The base oils resulting from other recycling methods were compared to the results of this paper. The comparison showed that the recycled oil produced by acetic acid treatment is comparable to those recycled by the other conventional methods.

Suggested Citation

  • Ihsan Hamawand & Talal Yusaf & Sardasht Rafat, 2013. "Recycling of Waste Engine Oils Using a New Washing Agent," Energies, MDPI, vol. 6(2), pages 1-27, February.
  • Handle: RePEc:gam:jeners:v:6:y:2013:i:2:p:1023-1049:d:23677
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/6/2/1023/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/6/2/1023/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yusaf, T.F. & Yousif, B.F. & Elawad, M.M., 2011. "Crude palm oil fuel for diesel-engines: Experimental and ANN simulation approaches," Energy, Elsevier, vol. 36(8), pages 4871-4878.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mansour Fakhri & Danial Arzjani & Pooyan Ayar & Maede Mottaghi & Nima Arzjani, 2021. "Performance Evaluation of WMA Containing Re-Refined Acidic Sludge and Amorphous Poly Alpha Olefin (APAO)," Sustainability, MDPI, vol. 13(6), pages 1-20, March.
    2. Santhoshkumar, A. & Ramanathan, Anand, 2020. "Recycling of waste engine oil through pyrolysis process for the production of diesel like fuel and its uses in diesel engine," Energy, Elsevier, vol. 197(C).
    3. Jialin Gao & Bo Li & Yonggang Wei & Shiwei Zhou & Hua Wang, 2023. "Cracking of Waste Engine Oil in the Presence of Fe 3 O 4," Energies, MDPI, vol. 16(2), pages 1-14, January.
    4. Paweł P. Włodarczyk & Barbara Włodarczyk, 2022. "Feasibility of Waste Engine Oil Electrooxidation with Ni-Co and Cu-B Catalysts," Energies, MDPI, vol. 15(20), pages 1-12, October.
    5. Paweł P. Włodarczyk & Barbara Włodarczyk, 2021. "Applicability of Waste Engine Oil for the Direct Production of Electricity," Energies, MDPI, vol. 14(4), pages 1-11, February.
    6. Abdelmadjid Mahfoudh BENDJERAD & Nawel CHEIKH & Houcine BENMEHDI & Nicolas MONTRELAY & Koffi Justin HOUESSOU & Xavier PIERENS & Karim BEN-HABIB & Adeline GOULLIEUX & Rose Marie DHEILLY, 2022. "Valorization of Used Lubricating Oils as a Possible Base Oil Source to Avoid Groundwater Pollution in the South of Algeria," Energies, MDPI, vol. 16(1), pages 1-17, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhammad Usman & Haris Hussain & Fahid Riaz & Muneeb Irshad & Rehmat Bashir & Muhammad Haris Shah & Adeel Ahmad Zafar & Usman Bashir & M. A. Kalam & M. A. Mujtaba & Manzoore Elahi M. Soudagar, 2021. "Artificial Neural Network Led Optimization of Oxyhydrogen Hybridized Diesel Operated Engine," Sustainability, MDPI, vol. 13(16), pages 1-24, August.
    2. Wong, Ka In & Wong, Pak Kin & Cheung, Chun Shun & Vong, Chi Man, 2013. "Modeling and optimization of biodiesel engine performance using advanced machine learning methods," Energy, Elsevier, vol. 55(C), pages 519-528.
    3. Hazar, Hanbey & Gul, Hakan, 2016. "Modeling analysis of chrome carbide (Cr3C2) coating on parts of combustion chamber of a SI engine," Energy, Elsevier, vol. 115(P1), pages 76-87.
    4. Çay, Yusuf & Korkmaz, Ibrahim & Çiçek, Adem & Kara, Fuat, 2013. "Prediction of engine performance and exhaust emissions for gasoline and methanol using artificial neural network," Energy, Elsevier, vol. 50(C), pages 177-186.
    5. Saddam H. Al-lwayzy & Talal Yusaf, 2013. "Chlorella protothecoides Microalgae as an Alternative Fuel for Tractor Diesel Engines," Energies, MDPI, vol. 6(2), pages 1-18, February.
    6. Arridina Susan Silitonga & Teuku Meurah Indra Mahlia & Abd Halim Shamsuddin & Hwai Chyuan Ong & Jassinnee Milano & Fitranto Kusumo & Abdi Hanra Sebayang & Surya Dharma & Husin Ibrahim & Hazlina Husin , 2019. "Optimization of Cerbera manghas Biodiesel Production Using Artificial Neural Networks Integrated with Ant Colony Optimization," Energies, MDPI, vol. 12(20), pages 1-21, October.
    7. Sanjid, A. & Masjuki, H.H. & Kalam, M.A. & Rahman, S.M. Ashrafur & Abedin, M.J. & Palash, S.M., 2013. "Impact of palm, mustard, waste cooking oil and Calophyllum inophyllum biofuels on performance and emission of CI engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 664-682.
    8. Mat Yasin, M.H. & Yusaf, Talal & Mamat, R. & Fitri Yusop, A., 2014. "Characterization of a diesel engine operating with a small proportion of methanol as a fuel additive in biodiesel blend," Applied Energy, Elsevier, vol. 114(C), pages 865-873.
    9. Dey, Suman & Reang, Narath Moni & Majumder, Arindam & Deb, Madhujit & Das, Pankaj Kumar, 2020. "A hybrid ANN-Fuzzy approach for optimization of engine operating parameters of a CI engine fueled with diesel-palm biodiesel-ethanol blend," Energy, Elsevier, vol. 202(C).
    10. Javed, Syed & Baig, Rahmath Ulla & Murthy, Y.V.V. Satyanarayana, 2018. "Study on noise in a hydrogen dual-fuelled zinc-oxide nanoparticle blended biodiesel engine and the development of an artificial neural network model," Energy, Elsevier, vol. 160(C), pages 774-782.
    11. Ganesan, P. & Rajakarunakaran, S. & Thirugnanasambandam, M. & Devaraj, D., 2015. "Artificial neural network model to predict the diesel electric generator performance and exhaust emissions," Energy, Elsevier, vol. 83(C), pages 115-124.
    12. Kusumo, F. & Silitonga, A.S. & Masjuki, H.H. & Ong, Hwai Chyuan & Siswantoro, J. & Mahlia, T.M.I., 2017. "Optimization of transesterification process for Ceiba pentandra oil: A comparative study between kernel-based extreme learning machine and artificial neural networks," Energy, Elsevier, vol. 134(C), pages 24-34.
    13. Kumar, A. Naresh & Kishore, P.S. & Raju, K. Brahma & Ashok, B. & Vignesh, R. & Jeevanantham, A.K. & Nanthagopal, K. & Tamilvanan, A., 2020. "Decanol proportional effect prediction model as additive in palm biodiesel using ANN and RSM technique for diesel engine," Energy, Elsevier, vol. 213(C).
    14. S. M. Ashrafur Rahman & I. M. Rizwanul Fattah & Hwai Chyuan Ong & M. F. M. A. Zamri, 2021. "State-of-the-Art of Strategies to Reduce Exhaust Emissions from Diesel Engine Vehicles," Energies, MDPI, vol. 14(6), pages 1-24, March.
    15. Mohd Fadzli Hamid & Yew Heng Teoh & Mohamad Yusof Idroas & Mazlan Mohamed & Shukriwani Sa’ad & Sharzali Che Mat & Muhammad Khalil Abdullah & Thanh Danh Le & Heoy Geok How & Huu Tho Nguyen, 2022. "A Review of the Emulsification Method for Alternative Fuels Used in Diesel Engines," Energies, MDPI, vol. 15(24), pages 1-26, December.
    16. Altarazi, Yazan S.M. & Abu Talib, Abd Rahim & Yu, Jianglong & Gires, Ezanee & Abdul Ghafir, Mohd Fahmi & Lucas, John & Yusaf, Talal, 2022. "Effects of biofuel on engines performance and emission characteristics: A review," Energy, Elsevier, vol. 238(PC).
    17. Guan, Qing & An, Haizhong & Gao, Xiangyun & Huang, Shupei & Li, Huajiao, 2016. "Estimating potential trade links in the international crude oil trade: A link prediction approach," Energy, Elsevier, vol. 102(C), pages 406-415.
    18. Arbab, M.I. & Masjuki, H.H. & Varman, M. & Kalam, M.A. & Imtenan, S. & Sajjad, H., 2013. "Fuel properties, engine performance and emission characteristic of common biodiesels as a renewable and sustainable source of fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 133-147.
    19. Mohammed I. Jahirul & Richard J. Brown & Wijitha Senadeera & Ian M. O'Hara & Zoran D. Ristovski, 2013. "The Use of Artificial Neural Networks for Identifying Sustainable Biodiesel Feedstocks," Energies, MDPI, vol. 6(8), pages 1-43, July.
    20. How, H.G. & Teoh, Y.H. & Masjuki, H.H. & Kalam, M.A., 2012. "Impact of coconut oil blends on particulate-phase PAHs and regulated emissions from a light duty diesel engine," Energy, Elsevier, vol. 48(1), pages 500-509.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:6:y:2013:i:2:p:1023-1049:d:23677. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.