IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v6y2013i12p6569-6585d31472.html
   My bibliography  Save this article

Optimal Scheduling for the Complementary Energy Storage System Operation Based on Smart Metering Data in the DC Distribution System

Author

Listed:
  • Bokyung Ko

    (School of Electrical Engineering, Korea University, Seoul 136-713, Korea)

  • Nugroho Prananto Utomo

    (School of Electrical Engineering, Korea University, Seoul 136-713, Korea)

  • Gilsoo Jang

    (School of Electrical Engineering, Korea University, Seoul 136-713, Korea)

  • Jaehan Kim

    (Korea Electric Power Research Institute (KEPRI), Daejeon 305-760, Korea)

  • Jintae Cho

    (Korea Electric Power Research Institute (KEPRI), Daejeon 305-760, Korea)

Abstract

The increasing penetration of distributed generation (DG) sources in low-voltage grid feeders causes problems concerning voltage regulation. The penetration of DG sources such as photovoltaics (PVs) in the distribution system can significantly impact the power flow and voltage conditions on the customer side. As the DG sources are more commonly connected to low-voltage distribution systems, voltage fluctuations in the distribution system are experienced because of the DG fluctuation and uncertainty. Therefore, the penetration of DGs in distribution systems is often limited by the required operating voltage ranges. By using an energy storage system (ESS), voltage fluctuation can be compensated for, thus satisfying the voltage regulation requirements. This paper presents an ESS scheduling algorithm based on the power injection data obtained from a smart metering system. The proposed ESS scheduling algorithm is designed for use within a direct current (DC) distribution grid, which comprises customers, each with a PV and an ESS system. The purpose of this ESS scheduling algorithm is to optimize the ESS scheduling by considering the complementary operation among all the ESSs.

Suggested Citation

  • Bokyung Ko & Nugroho Prananto Utomo & Gilsoo Jang & Jaehan Kim & Jintae Cho, 2013. "Optimal Scheduling for the Complementary Energy Storage System Operation Based on Smart Metering Data in the DC Distribution System," Energies, MDPI, vol. 6(12), pages 1-17, December.
  • Handle: RePEc:gam:jeners:v:6:y:2013:i:12:p:6569-6585:d:31472
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/6/12/6569/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/6/12/6569/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wenpeng Yu & Dong Liu & Yuhui Huang, 2013. "Operation Optimization Based on the Power Supply and Storage Capacity of an Active Distribution Network," Energies, MDPI, vol. 6(12), pages 1-16, December.
    2. Depuru, Soma Shekara Sreenadh Reddy & Wang, Lingfeng & Devabhaktuni, Vijay, 2011. "Smart meters for power grid: Challenges, issues, advantages and status," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2736-2742, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luis Hernández-Callejo, 2019. "A Comprehensive Review of Operation and Control, Maintenance and Lifespan Management, Grid Planning and Design, and Metering in Smart Grids," Energies, MDPI, vol. 12(9), pages 1-50, April.
    2. Yongchun Yang & Xiaodan Wang & Jingjing Luo & Jie Duan & Yajing Gao & Hong Li & Xiangning Xiao, 2017. "Multi-Objective Coordinated Planning of Distributed Generation and AC/DC Hybrid Distribution Networks Based on a Multi-Scenario Technique Considering Timing Characteristics," Energies, MDPI, vol. 10(12), pages 1-29, December.
    3. Hong Li & Xiaodan Wang & Jie Duan & Feifan Chen & Yajing Gao, 2018. "Locating Optimization of an Integrated Energy Supply Centre in a Typical New District Based on the Load Density," Energies, MDPI, vol. 11(4), pages 1-22, April.
    4. Sam Weckx & Reinhilde D'hulst & Johan Driesen, 2015. "Locational Pricing to Mitigate Voltage Problems Caused by High PV Penetration," Energies, MDPI, vol. 8(5), pages 1-22, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chou, Jui-Sheng & Gusti Ayu Novi Yutami, I, 2014. "Smart meter adoption and deployment strategy for residential buildings in Indonesia," Applied Energy, Elsevier, vol. 128(C), pages 336-349.
    2. Abolhosseini, Shahrouz & Heshmati, Almas & Altmann, Jörn, 2014. "A Review of Renewable Energy Supply and Energy Efficiency Technologies," IZA Discussion Papers 8145, Institute of Labor Economics (IZA).
    3. Haidar, Ahmed M.A. & Muttaqi, Kashem & Sutanto, Danny, 2015. "Smart Grid and its future perspectives in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1375-1389.
    4. Yanshan Yu & Jin Yang & Bin Chen, 2012. "The Smart Grids in China—A Review," Energies, MDPI, vol. 5(5), pages 1-18, May.
    5. Wei-Tzer Huang & Kai-Chao Yao & Chun-Ching Wu, 2014. "Using the Direct Search Method for Optimal Dispatch of Distributed Generation in a Medium-Voltage Microgrid," Energies, MDPI, vol. 7(12), pages 1-19, December.
    6. Emad Ebeid & Rune Heick & Rune Hylsberg Jacobsen, 2017. "Deducing Energy Consumer Behavior from Smart Meter Data," Future Internet, MDPI, vol. 9(3), pages 1-25, July.
    7. Zhou, Bin & Li, Wentao & Chan, Ka Wing & Cao, Yijia & Kuang, Yonghong & Liu, Xi & Wang, Xiong, 2016. "Smart home energy management systems: Concept, configurations, and scheduling strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 30-40.
    8. Qingwu Gong & Jiazhi Lei & Jun Ye, 2016. "Optimal Siting and Sizing of Distributed Generators in Distribution Systems Considering Cost of Operation Risk," Energies, MDPI, vol. 9(1), pages 1-18, January.
    9. Syed Ali Abbas Kazmi & Muhammad Khuram Shahzad & Akif Zia Khan & Dong Ryeol Shin, 2017. "Smart Distribution Networks: A Review of Modern Distribution Concepts from a Planning Perspective," Energies, MDPI, vol. 10(4), pages 1-47, April.
    10. K. Habibul Kabir & Shafquat Yasar Aurko & Md. Saifur Rahman, 2021. "Smart Power Management in OIC Countries: A Critical Overview Using SWOT-AHP and Hybrid MCDM Analysis," Energies, MDPI, vol. 14(20), pages 1-50, October.
    11. Abolhosseini, Shahrouz & Heshmati, Almas & Altmann, Jörn, 2014. "The Effect of Renewable Energy Development on Carbon Emission Reduction: An Empirical Analysis for the EU-15 Countries," IZA Discussion Papers 7989, Institute of Labor Economics (IZA).
    12. van de Kaa, G. & Fens, T. & Rezaei, J. & Kaynak, D. & Hatun, Z. & Tsilimeni-Archangelidi, A., 2019. "Realizing smart meter connectivity: Analyzing the competing technologies Power line communication, mobile telephony, and radio frequency using the best worst method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 320-327.
    13. Fei Chen & Dong Liu & Xiaofang Xiong, 2017. "Research on Stochastic Optimal Operation Strategy of Active Distribution Network Considering Intermittent Energy," Energies, MDPI, vol. 10(4), pages 1-23, April.
    14. Wen, Lulu & Zhou, Kaile & Yang, Shanlin & Li, Lanlan, 2018. "Compression of smart meter big data: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 59-69.
    15. Pereira, Guillermo Ivan & Specht, Jan Martin & Silva, Patrícia Pereira & Madlener, Reinhard, 2018. "Technology, business model, and market design adaptation toward smart electricity distribution: Insights for policy making," Energy Policy, Elsevier, vol. 121(C), pages 426-440.
    16. O’Dwyer, Edward & Pan, Indranil & Acha, Salvador & Shah, Nilay, 2019. "Smart energy systems for sustainable smart cities: Current developments, trends and future directions," Applied Energy, Elsevier, vol. 237(C), pages 581-597.
    17. Erlinghagen, Sabine & Lichtensteiger, Bill & Markard, Jochen, 2015. "Smart meter communication standards in Europe – a comparison," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1249-1262.
    18. Wang, Yong & Li, Lin, 2016. "Critical peak electricity pricing for sustainable manufacturing: Modeling and case studies," Applied Energy, Elsevier, vol. 175(C), pages 40-53.
    19. Shan Gao & Yi Zheng & Shaoyuan Li, 2018. "Enhancing Strong Neighbor-Based Optimization for Distributed Model Predictive Control Systems," Mathematics, MDPI, vol. 6(5), pages 1-20, May.
    20. Xue, Xue & Wang, Shengwei & Yan, Chengchu & Cui, Borui, 2015. "A fast chiller power demand response control strategy for buildings connected to smart grid," Applied Energy, Elsevier, vol. 137(C), pages 77-87.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:6:y:2013:i:12:p:6569-6585:d:31472. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.