IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v5y2012i9p3479-3491d19944.html
   My bibliography  Save this article

Experimental Study on Frost Height of Round Plate Fin-Tube Heat Exchangers for Mobile Heat Pumps

Author

Listed:
  • Moo-Yeon Lee

    (Department of Mechanical Engineering, Dong-A University, 37 Nakdong-Daero 550 beon-gil saha-gu, Busan, Korea)

  • Yongchan Kim

    (Department of Mechanical Engineering, Korea University, Anam-Dong, Sungbuk-Ku, Seoul 136-713, Korea)

  • Dong-Yeon Lee

    (School of Mechanical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 712-749, Korea)

Abstract

The objective of this study was to provide experimental data that could be used to predict frost growth and frost performance of a round plate fin-tube heat exchanger for low temperature heat pumps used in zero emission vehicles under cold weather conditions. In this study, round plate fin-tube heat exchangers were tested with variation of the fin space, air flow rate, relative humidity, and inlet air temperature. Frost height was measured and considered with the boundary layer interruption between fins. Frost height for 8.0 mm of fin space was increased by approximately 91.9% with an increase of relative humidity from 50.0% to 80.0%. The growth rate of frost height at 1.2 m 3 /min was observed to be 13.0% greater than that at 0.8 m 3 /min. Finally, the variation of the blockage ratio with fin space would be an important reference for designing advanced heat exchangers that operate under cold weather conditions.

Suggested Citation

  • Moo-Yeon Lee & Yongchan Kim & Dong-Yeon Lee, 2012. "Experimental Study on Frost Height of Round Plate Fin-Tube Heat Exchangers for Mobile Heat Pumps," Energies, MDPI, vol. 5(9), pages 1-13, September.
  • Handle: RePEc:gam:jeners:v:5:y:2012:i:9:p:3479-3491:d:19944
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/5/9/3479/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/5/9/3479/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Byrne, Paul & Miriel, Jacques & Lenat, Yves, 2011. "Experimental study of an air-source heat pump for simultaneous heating and cooling – Part 2: Dynamic behaviour and two-phase thermosiphon defrosting technique," Applied Energy, Elsevier, vol. 88(9), pages 3072-3078.
    2. Huang, Dong & Li, Quanxu & Yuan, Xiuling, 2009. "Comparison between hot-gas bypass defrosting and reverse-cycle defrosting methods on an air-to-water heat pump," Applied Energy, Elsevier, vol. 86(9), pages 1697-1703, September.
    3. Chung-Won Cho & Ho-Seong Lee & Jong-Phil Won & Moo-Yeon Lee, 2012. "Measurement and Evaluation of Heating Performance of Heat Pump Systems Using Wasted Heat from Electric Devices for an Electric Bus," Energies, MDPI, vol. 5(3), pages 1-12, March.
    4. Shao, Liang-Liang & Yang, Liang & Zhang, Chun-Lu, 2010. "Comparison of heat pump performance using fin-and-tube and microchannel heat exchangers under frost conditions," Applied Energy, Elsevier, vol. 87(4), pages 1187-1197, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jianying Gong & Jianqiang Hou & Jinjuan Sun & Guojun Li & Tieyu Gao, 2018. "A Numerical Investigation of Frost Growth on Cold Surfaces Based on the Lattice Boltzmann Method," Energies, MDPI, vol. 11(8), pages 1-13, August.
    2. Ali Sadeghianjahromi & Saeid Kheradmand & Hossain Nemati & Jane-Sunn Liaw & Chi-Chuan Wang, 2018. "Compound Heat Transfer Enhancement of Wavy Fin-and-Tube Heat Exchangers through Boundary Layer Restarting and Swirled Flow," Energies, MDPI, vol. 11(8), pages 1-19, July.
    3. Qinghong Peng & Qungui Du, 2016. "Progress in Heat Pump Air Conditioning Systems for Electric Vehicles—A Review," Energies, MDPI, vol. 9(4), pages 1-17, March.
    4. Mustansar Hayat Saggu & Nadeem Ahmed Sheikh & Usama Muhammad Niazi & Muhammad Irfan & Adam Glowacz, 2020. "Predicting the Structural Reliability of LNG Processing Plate-Fin Heat Exchanger for Energy Conservation," Energies, MDPI, vol. 13(9), pages 1-22, May.
    5. Jingang Yang & Yaohua Zhao & Aoxue Chen & Zhenhua Quan, 2019. "Thermal Performance of a Low-Temperature Heat Exchanger Using a Micro Heat Pipe Array," Energies, MDPI, vol. 12(4), pages 1-16, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Fenghao & Wang, Zhihua & Zheng, Yuxin & Lin, Zhang & Hao, Pengfei & Huan, Chao & Wang, Tian, 2015. "Performance investigation of a novel frost-free air-source heat pump water heater combined with energy storage and dehumidification," Applied Energy, Elsevier, vol. 139(C), pages 212-219.
    2. Byrne, Paul & Miriel, Jacques & Lenat, Yves, 2011. "Experimental study of an air-source heat pump for simultaneous heating and cooling – Part 2: Dynamic behaviour and two-phase thermosiphon defrosting technique," Applied Energy, Elsevier, vol. 88(9), pages 3072-3078.
    3. Tang, Jinchen & Gong, Guangcai & Su, Huan & Wu, Fanhao & Herman, Cila, 2016. "Performance evaluation of a novel method of frost prevention and retardation for air source heat pumps using the orthogonal experiment design method," Applied Energy, Elsevier, vol. 169(C), pages 696-708.
    4. Ahn, Jae Hwan & Kang, Hoon & Lee, Ho Seong & Jung, Hae Won & Baek, Changhyun & Kim, Yongchan, 2014. "Heating performance characteristics of a dual source heat pump using air and waste heat in electric vehicles," Applied Energy, Elsevier, vol. 119(C), pages 1-9.
    5. Kim, Min-Hwan & Lee, Kwan-Soo, 2015. "Determination method of defrosting start-time based on temperature measurements," Applied Energy, Elsevier, vol. 146(C), pages 263-269.
    6. Liang, Jierong & Sun, Li & Li, Tingxun, 2018. "A novel defrosting method in gasoline vapor recovery application," Energy, Elsevier, vol. 163(C), pages 751-765.
    7. Sheng, Wei & Liu, Pengpeng & Dang, Chaobin & Liu, Guixin, 2017. "Review of restraint frost method on cold surface," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 806-813.
    8. Cheng, Jia-Hao & Cao, Xiang & Shao, Liang-Liang & Zhang, Chun-Lu, 2023. "Performance evaluation of a novel heat pump system for drying with EVI-compressor driven precooling and reheating," Energy, Elsevier, vol. 278(PB).
    9. Zhang, Zhenying & Wang, Jiayu & Feng, Xu & Chang, Li & Chen, Yanhua & Wang, Xingguo, 2018. "The solutions to electric vehicle air conditioning systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 443-463.
    10. Jagirdar, Mrinal & Lee, Poh Seng, 2017. "A diagnostic tool for detection of flow-regimes in a microchannel using transient wall temperature signal," Applied Energy, Elsevier, vol. 185(P2), pages 2232-2244.
    11. Ziqi Zhang & Wanyong Li & Junye Shi & Jiangping Chen, 2016. "A Study on Electric Vehicle Heat Pump Systems in Cold Climates," Energies, MDPI, vol. 9(11), pages 1-11, October.
    12. Chen, Siliang & Chen, Kang & Zhu, Xu & Jin, Xinqiao & Du, Zhimin, 2022. "Deep learning-based image recognition method for on-demand defrosting control to save energy in commercial energy systems," Applied Energy, Elsevier, vol. 324(C).
    13. Badri, Deyae & Toublanc, Cyril & Rouaud, Olivier & Havet, Michel, 2021. "Review on frosting, defrosting and frost management techniques in industrial food freezers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    14. Paul Byrne, 2022. "Research Summary and Literature Review on Modelling and Simulation of Heat Pumps for Simultaneous Heating and Cooling for Buildings," Energies, MDPI, vol. 15(10), pages 1-43, May.
    15. Zhang, Penglei & Wang, Baolong & Shi, Wenxing & Li, Xianting, 2015. "Experimental investigation on two-phase thermosyphon loop with partially liquid-filled downcomer," Applied Energy, Elsevier, vol. 160(C), pages 10-17.
    16. Davide Di Battista & Roberto Cipollone, 2023. "Waste Energy Recovery and Valorization in Internal Combustion Engines for Transportation," Energies, MDPI, vol. 16(8), pages 1-28, April.
    17. Tong-Bou Chang & Jer-Jia Sheu & Jhong-Wei Huang, 2020. "High-Efficiency HVAC System with Defog/Dehumidification Function for Electric Vehicles," Energies, MDPI, vol. 14(1), pages 1-12, December.
    18. Wang, W. & Xiao, J. & Guo, Q.C. & Lu, W.P. & Feng, Y.C., 2011. "Field test investigation of the characteristics for the air source heat pump under two typical mal-defrost phenomena," Applied Energy, Elsevier, vol. 88(12), pages 4470-4480.
    19. Qinghong Peng & Qungui Du, 2016. "Progress in Heat Pump Air Conditioning Systems for Electric Vehicles—A Review," Energies, MDPI, vol. 9(4), pages 1-17, March.
    20. Yin, Hai-Jiao & Yang, Zhao & Chen, Ai-Qiang & Zhang, Na, 2012. "Experimental research on a novel cold storage defrost method based on air bypass circulation and electric heater," Energy, Elsevier, vol. 37(1), pages 623-631.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:5:y:2012:i:9:p:3479-3491:d:19944. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.