IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v5y2012i5p1371-1383d17712.html
   My bibliography  Save this article

Characteristic Evaluation on the Cooling Performance of an Electrical Air Conditioning System Using R744 for a Fuel Cell Electric Vehicle

Author

Listed:
  • Moo-Yeon Lee

    (Korea Automotive Technology Institute, 74 Yongjung-Ri, Pungse-Myun, Dongnam-Gu, Chonan-Si, 330-012, Korea)

  • Ho-Seong Lee

    (Korea Automotive Technology Institute, 74 Yongjung-Ri, Pungse-Myun, Dongnam-Gu, Chonan-Si, 330-012, Korea)

  • Hong-Phil Won

    (Korea Automotive Technology Institute, 74 Yongjung-Ri, Pungse-Myun, Dongnam-Gu, Chonan-Si, 330-012, Korea)

Abstract

The objective of this study was to investigate the cooling performance characteristics of an electrical air conditioning system using R744 as an alternative of R-134a for a fuel cell electric vehicle. In order to analyze the cooling performance characteristics of the air conditioning system using R744 for a fuel cell electric vehicle, an electrical air conditioning system using R744 was developed and tested under various operating conditions according to both inlet air conditions of the gas cooler and evaporator and compressor speed. The cooling capacity and coefficient of performance (COP) forcooling of the tested air conditioning system were up to 6.4 kW and 2.5, respectively. In addition, the electrical air conditioning system with R744 using an inverter driven compressor showed better performance than the conventional air conditioning system with R-134a under the same operating conditions. The observed cooling performance of the developed electrical air conditioning system was found to be sufficient for cooling loads under various real driving conditions for a fuel cell electric vehicle.

Suggested Citation

  • Moo-Yeon Lee & Ho-Seong Lee & Hong-Phil Won, 2012. "Characteristic Evaluation on the Cooling Performance of an Electrical Air Conditioning System Using R744 for a Fuel Cell Electric Vehicle," Energies, MDPI, vol. 5(5), pages 1-13, May.
  • Handle: RePEc:gam:jeners:v:5:y:2012:i:5:p:1371-1383:d:17712
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/5/5/1371/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/5/5/1371/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chung-Won Cho & Ho-Seong Lee & Jong-Phil Won & Moo-Yeon Lee, 2012. "Measurement and Evaluation of Heating Performance of Heat Pump Systems Using Wasted Heat from Electric Devices for an Electric Bus," Energies, MDPI, vol. 5(3), pages 1-12, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Zhenying & Wang, Jiayu & Feng, Xu & Chang, Li & Chen, Yanhua & Wang, Xingguo, 2018. "The solutions to electric vehicle air conditioning systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 443-463.
    2. Javier Serrano & Jesús Acero & Rafael Alonso & Claudio Carretero & Ignacio Lope & José Miguel Burdío, 2016. "Design and Implementation of a Test-Bench for Efficiency Measurement of Domestic Induction Heating Appliances," Energies, MDPI, vol. 9(8), pages 1-11, August.
    3. Ho-Seong Lee & Choong-Won Cho & Jae-Hyeong Seo & Moo-Yeon Lee, 2016. "Cooling Performance Characteristics of the Stack Thermal Management System for Fuel Cell Electric Vehicles under Actual Driving Conditions," Energies, MDPI, vol. 9(5), pages 1-14, April.
    4. Qinghong Peng & Qungui Du, 2016. "Progress in Heat Pump Air Conditioning Systems for Electric Vehicles—A Review," Energies, MDPI, vol. 9(4), pages 1-17, March.
    5. Yuan, Jun & Nian, Victor & Su, Bin & Meng, Qun, 2017. "A simultaneous calibration and parameter ranking method for building energy models," Applied Energy, Elsevier, vol. 206(C), pages 657-666.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Davide Di Battista & Roberto Cipollone, 2023. "Waste Energy Recovery and Valorization in Internal Combustion Engines for Transportation," Energies, MDPI, vol. 16(8), pages 1-28, April.
    2. Qinghong Peng & Qungui Du, 2016. "Progress in Heat Pump Air Conditioning Systems for Electric Vehicles—A Review," Energies, MDPI, vol. 9(4), pages 1-17, March.
    3. Ahn, Jae Hwan & Kang, Hoon & Lee, Ho Seong & Jung, Hae Won & Baek, Changhyun & Kim, Yongchan, 2014. "Heating performance characteristics of a dual source heat pump using air and waste heat in electric vehicles," Applied Energy, Elsevier, vol. 119(C), pages 1-9.
    4. Moo-Yeon Lee & Yongchan Kim & Dong-Yeon Lee, 2012. "Experimental Study on Frost Height of Round Plate Fin-Tube Heat Exchangers for Mobile Heat Pumps," Energies, MDPI, vol. 5(9), pages 1-13, September.
    5. Andrzej Łebkowski, 2019. "Studies of Energy Consumption by a City Bus Powered by a Hybrid Energy Storage System in Variable Road Conditions," Energies, MDPI, vol. 12(5), pages 1-39, March.
    6. Myeong Hyeon Park & Sung Chul Kim, 2019. "Heating Performance Enhancement of High Capacity PTC Heater with Modified Louver Fin for Electric Vehicles," Energies, MDPI, vol. 12(15), pages 1-14, July.
    7. Zhang, Zhenying & Wang, Jiayu & Feng, Xu & Chang, Li & Chen, Yanhua & Wang, Xingguo, 2018. "The solutions to electric vehicle air conditioning systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 443-463.
    8. Tong-Bou Chang & Jer-Jia Sheu & Jhong-Wei Huang, 2020. "High-Efficiency HVAC System with Defog/Dehumidification Function for Electric Vehicles," Energies, MDPI, vol. 14(1), pages 1-12, December.
    9. Kenneth R. Uren & George van Schoor & Martin van Eldik & Johannes J. A. de Bruin, 2020. "An Energy Graph-Based Approach to Fault Diagnosis of a Transcritical CO 2 Heat Pump," Energies, MDPI, vol. 13(7), pages 1-34, April.
    10. Ahn, Jae Hwan & Kang, Hoon & Lee, Ho Seong & Kim, Yongchan, 2015. "Performance characteristics of a dual-evaporator heat pump system for effective dehumidifying and heating of a cabin in electric vehicles," Applied Energy, Elsevier, vol. 146(C), pages 29-37.
    11. Ahn, Jae Hwan & Lee, Joo Seong & Baek, Changhyun & Kim, Yongchan, 2016. "Performance improvement of a dehumidifying heat pump using an additional waste heat source in electric vehicles with low occupancy," Energy, Elsevier, vol. 115(P1), pages 67-75.
    12. Caiyang Wei & Theo Hofman & Esin Ilhan Caarls & Rokus van Iperen, 2019. "Integrated Energy and Thermal Management for Electrified Powertrains," Energies, MDPI, vol. 12(11), pages 1-24, May.
    13. Matthias Rogge & Sebastian Wollny & Dirk Uwe Sauer, 2015. "Fast Charging Battery Buses for the Electrification of Urban Public Transport—A Feasibility Study Focusing on Charging Infrastructure and Energy Storage Requirements," Energies, MDPI, vol. 8(5), pages 1-20, May.
    14. Hyun Sung Kang & Seungkyu Sim & Yoon Hyuk Shin, 2018. "A Numerical Study on the Light-Weight Design of PTC Heater for an Electric Vehicle Heating System," Energies, MDPI, vol. 11(5), pages 1-15, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:5:y:2012:i:5:p:1371-1383:d:17712. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.