IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i7p1633-d1366147.html
   My bibliography  Save this article

Analysis for the Implementation of Distributed Renewable Energy Generation Systems for Areas of High Vulnerability Due to Hillside Movements: Case Study of Marianza-Cuenca, Ecuador

Author

Listed:
  • Federico Córdova-González

    (Doctoral School, Universidad de León, 24007 León, Spain)

  • Eduardo García Meléndez

    (Research Group Environmental Geology, Quaternary and Geodiversity (QGEO), Universidad de León, 24007 León, Spain)

  • Montserrat Ferrer Juliá

    (Research Group Environmental Geology, Quaternary and Geodiversity (QGEO), Universidad de León, 24007 León, Spain)

  • Daniel Icaza

    (Laboratorio de Energías Renovables y Simulación en Tiempo Real (ENERSIM), Centro de Investigación, Innovación y Transferencia Tecnológica, Universidad Católica de Cuenca, Cuenca 010101, Ecuador)

Abstract

This research presents a renewable energy system that takes advantage of the energy potential available in the territory. This study emerges as a relevant option to provide solutions to geological risk areas where there are buildings that, due to emergency situations at certain times of the year during deep winter, are a target of danger and where its inhabitants would find it difficult to abandon their properties. The record of mass movements covering the city of Cuenca-Ecuador and part of the province has shown that the main triggering factor of this type of movement comprises the geological characteristics of tertiary formations characterized by lithological components that become unstable in the presence of water and due to their slopes being pronounced. Hybrid systems are effective solutions in distributed electricity generation, especially when it comes to helping people and their buildings in times of great need and the required electricity generation is basic. A hybrid photovoltaic, wind and hydrokinetic system has been designed that supplies electrical energy to a specific area on the opposite geographical side that is completely safe. The renewable energy system is connected to the public electricity grid available on site; however, in the event of an emergency the grid is disconnected for safety and only the hybrid system will work with the support of a battery backup system. In this study, the Homer Pro simulation tool was used and its results indicate that renewable systems that include PV, HKT and WT elements are economically viable, with a COE of USD 0.89/kWh.

Suggested Citation

  • Federico Córdova-González & Eduardo García Meléndez & Montserrat Ferrer Juliá & Daniel Icaza, 2024. "Analysis for the Implementation of Distributed Renewable Energy Generation Systems for Areas of High Vulnerability Due to Hillside Movements: Case Study of Marianza-Cuenca, Ecuador," Energies, MDPI, vol. 17(7), pages 1-30, March.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:7:p:1633-:d:1366147
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/7/1633/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/7/1633/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vicente Sebastian Espinoza & Veronica Guayanlema & Javier Mart nez-G mez, 2018. "Energy Efficiency Plan Benefits in Ecuador: Long-range Energy Alternative Planning Model," International Journal of Energy Economics and Policy, Econjournals, vol. 8(4), pages 52-54.
    2. Daniel Icaza-Alvarez & Nestor Daniel Galan-Hernandez & Eber Enrique Orozco-Guillen & Francisco Jurado, 2023. "Smart Energy Planning in the Midst of a Technological and Political Change towards a 100% Renewable System in Mexico by 2050," Energies, MDPI, vol. 16(20), pages 1-26, October.
    3. Tostado-Véliz, Marcos & Rezaee Jordehi, Ahmad & Amir Mansouri, Seyed & Jurado, Francisco, 2022. "Day-ahead scheduling of 100% isolated communities under uncertainties through a novel stochastic-robust model," Applied Energy, Elsevier, vol. 328(C).
    4. Demirci, Alpaslan & Öztürk, Zafer & Tercan, Said Mirza, 2023. "Decision-making between hybrid renewable energy configurations and grid extension in rural areas for different climate zones," Energy, Elsevier, vol. 262(PA).
    5. Chicco, Gianfranco & Mancarella, Pierluigi, 2009. "Distributed multi-generation: A comprehensive view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(3), pages 535-551, April.
    6. Veerasamy, Veerapandiyan & Hu, Zhijian & Qiu, Haifeng & Murshid, Shadab & Gooi, Hoay Beng & Nguyen, Hung Dinh, 2024. "Blockchain-enabled peer-to-peer energy trading and resilient control of microgrids," Applied Energy, Elsevier, vol. 353(PA).
    7. Gideon Link Sackitey, 2023. "Do environmental taxes affect energy consumption and energy intensity? An empirical analysis of OECD countries," Cogent Economics & Finance, Taylor & Francis Journals, vol. 11(1), pages 2156094-215, December.
    8. Dong, Bing & Liu, Yapan & Fontenot, Hannah & Ouf, Mohamed & Osman, Mohamed & Chong, Adrian & Qin, Shuxu & Salim, Flora & Xue, Hao & Yan, Da & Jin, Yuan & Han, Mengjie & Zhang, Xingxing & Azar, Elie & , 2021. "Occupant behavior modeling methods for resilient building design, operation and policy at urban scale: A review," Applied Energy, Elsevier, vol. 293(C).
    9. Tomasz Rokicki & Piotr Bórawski & András Szeberényi, 2023. "The Impact of the 2020–2022 Crises on EU Countries’ Independence from Energy Imports, Particularly from Russia," Energies, MDPI, vol. 16(18), pages 1-26, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gabriele Loreti & Andrea Luigi Facci & Stefano Ubertini, 2021. "High-Efficiency Combined Heat and Power through a High-Temperature Polymer Electrolyte Membrane Fuel Cell and Gas Turbine Hybrid System," Sustainability, MDPI, vol. 13(22), pages 1-24, November.
    2. Funcke, Simon & Bauknecht, Dierk, 2016. "Typology of centralised and decentralised visions for electricity infrastructure," Utilities Policy, Elsevier, vol. 40(C), pages 67-74.
    3. Aman, M.M. & Jasmon, G.B. & Bakar, A.H.A. & Mokhlis, H., 2014. "A new approach for optimum simultaneous multi-DG distributed generation Units placement and sizing based on maximization of system loadability using HPSO (hybrid particle swarm optimization) algorithm," Energy, Elsevier, vol. 66(C), pages 202-215.
    4. Gottschamer, L. & Zhang, Q., 2016. "Interactions of factors impacting implementation and sustainability of renewable energy sourced electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 164-174.
    5. Jiang-Jiang, Wang & Chun-Fa, Zhang & You-Yin, Jing, 2010. "Multi-criteria analysis of combined cooling, heating and power systems in different climate zones in China," Applied Energy, Elsevier, vol. 87(4), pages 1247-1259, April.
    6. Llaria, Alvaro & Curea, Octavian & Jiménez, Jaime & Camblong, Haritza, 2011. "Survey on microgrids: Unplanned islanding and related inverter control techniques," Renewable Energy, Elsevier, vol. 36(8), pages 2052-2061.
    7. Al Moussawi, Houssein & Fardoun, Farouk & Louahlia, Hasna, 2017. "Selection based on differences between cogeneration and trigeneration in various prime mover technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 491-511.
    8. Sultana, U. & Khairuddin, Azhar B. & Aman, M.M. & Mokhtar, A.S. & Zareen, N., 2016. "A review of optimum DG placement based on minimization of power losses and voltage stability enhancement of distribution system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 363-378.
    9. Bouzid, Allal M. & Guerrero, Josep M. & Cheriti, Ahmed & Bouhamida, Mohamed & Sicard, Pierre & Benghanem, Mustapha, 2015. "A survey on control of electric power distributed generation systems for microgrid applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 751-766.
    10. Capuder, Tomislav & Mancarella, Pierluigi, 2014. "Techno-economic and environmental modelling and optimization of flexible distributed multi-generation options," Energy, Elsevier, vol. 71(C), pages 516-533.
    11. Bracco, Stefano & Delfino, Federico & Pampararo, Fabio & Robba, Michela & Rossi, Mansueto, 2013. "The University of Genoa smart polygeneration microgrid test-bed facility: The overall system, the technologies and the research challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 442-459.
    12. Pere Ariza-Montobbio & Susana Herrero Olarte, 2021. "Socio-metabolic profiles of electricity consumption along the rural–urban continuum of Ecuador: Whose energy sovereignty?," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 7961-7995, May.
    13. Hou, Rui & Zhang, Nachuan & Gao, Wei & Chen, Kang & Liu, Yongqiu, 2023. "Thermodynamic, environmental, and exergoeconomic feasibility analyses and optimization of biomass gasifier-solid oxide fuel cell boosting a doable-flash binary geothermal cycle; a novel trigeneration ," Energy, Elsevier, vol. 265(C).
    14. Zheng, Xuyue & Wu, Guoce & Qiu, Yuwei & Zhan, Xiangyan & Shah, Nilay & Li, Ning & Zhao, Yingru, 2018. "A MINLP multi-objective optimization model for operational planning of a case study CCHP system in urban China," Applied Energy, Elsevier, vol. 210(C), pages 1126-1140.
    15. Pina, Eduardo A. & Lozano, Miguel A. & Serra, Luis M., 2018. "Thermoeconomic cost allocation in simple trigeneration systems including thermal energy storage," Energy, Elsevier, vol. 153(C), pages 170-184.
    16. Tostado-Véliz, Marcos & Rezaee Jordehi, Ahmad & Fernández-Lobato, Lázuli & Jurado, Francisco, 2023. "Robust energy management in isolated microgrids with hydrogen storage and demand response," Applied Energy, Elsevier, vol. 345(C).
    17. Jerónimo Ramos-Teodoro & Adrián Giménez-Miralles & Francisco Rodríguez & Manuel Berenguel, 2020. "A Flexible Tool for Modeling and Optimal Dispatch of Resources in Agri-Energy Hubs," Sustainability, MDPI, vol. 12(21), pages 1-24, October.
    18. Lozano, Miguel A. & Ramos, Jose C. & Serra, Luis M., 2010. "Cost optimization of the design of CHCP (combined heat, cooling and power) systems under legal constraints," Energy, Elsevier, vol. 35(2), pages 794-805.
    19. Konstantin Kalmykov & Irina Anikina & Daria Kolbantseva & Milana Trescheva & Dmitriy Treschev & Aleksandr Kalyutik & Alena Aleshina & Iaroslav Vladimirov, 2022. "Use of Heat Pumps in the Hydrogen Production Cycle at Thermal Power Plants," Sustainability, MDPI, vol. 14(13), pages 1-18, June.
    20. Kyriakarakos, George & Dounis, Anastasios I. & Rozakis, Stelios & Arvanitis, Konstantinos G. & Papadakis, George, 2011. "Polygeneration microgrids: A viable solution in remote areas for supplying power, potable water and hydrogen as transportation fuel," Applied Energy, Elsevier, vol. 88(12), pages 4517-4526.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:7:p:1633-:d:1366147. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.