IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i6p1457-d1359030.html
   My bibliography  Save this article

An Ethane-Based CSI Process and Two Types of Flooding Process as a Hybrid Method for Enhancing Heavy Oil Recovery

Author

Listed:
  • Yishu Li

    (Faculty of Engineering and Applied Science, University of Regina, Regina, SK S4S 0A2, Canada)

  • Zhongwei Du

    (Faculty of Engineering and Applied Science, University of Regina, Regina, SK S4S 0A2, Canada)

  • Bo Wang

    (Faculty of Engineering and Applied Science, University of Regina, Regina, SK S4S 0A2, Canada)

  • Jiasheng Ding

    (Novus Energy Inc., Calgary, AB T2P 3J4, Canada)

  • Fanhua Zeng

    (Faculty of Engineering and Applied Science, University of Regina, Regina, SK S4S 0A2, Canada)

Abstract

Combining multiple secondary oil recovery (SOR)/enhanced oil recovery (EOR) methods can be an effective way to maximize oil recovery from heavy oil reservoirs; however, previous studies typically focus on single methods. In order to optimize the combined process of ethane-based cyclic solvent injection (CSI) and water/nanoparticle-solution flooding, a comprehensive understanding of the impact of injection pressure, water, and nanoparticles on CSI performance is crucial. This study aims to provide such understanding through experimental evaluation, advancing the knowledge of EOR methods for heavy oil recovery. Three approaches (an ethane-based CSI process, water flooding, and nanoparticle-solution flooding) were applied through a cylindrical sandpack model with a length of 95.0 cm and a diameter of 3.8 cm. Test 1 conducted an ethane-based CSI process only. Test 2 conducted a combination approach of CSI–water flooding–CSI–nanoparticle-solution flooding–CSI. Specifically, the injection pressure of the first CSI phase in Test 2 was gradually increased from 3500 to 5500 kPa. The second and the third CSI phases had the same injection pressure as Test 1 at 5500 kPa. The CSI process ceased once the oil recovery was less than 0.5% of the original oil in place (OOIP) in a single cycle. Results show that the ethane-based CSI process is sensitive to injection pressure. A high injection pressure is crucial for optimal oil recovery. The first CSI phase in Test 2, where the injection pressure was increased gradually, resulted in a 2.9% lower oil recovery and five times as much ethane consumption compared to Test 1, which applied a high injection pressure. It was also found that water flooding improved the oil recovery in the CSI process. In Test 2, the oil recovery factor of the second CSI phase increased by 57% after the water flooding process, which is likely due to the formation of water channels and a dispersed oil phase that increased the contact area between ethane and oil. Although the nanoparticle-solution flooding only had 0.3% oil recovery, after that the third CSI phase stimulated another 10.8% of OOIP even when the water saturation achieved more than 65%. This demonstrated that the addition of nanoparticles can maintain the stability of the foam and enhance the transfer of ethane to the heavy oil. Finally, Test 2 reached a total oil recovery factor of 76.1% on a lab scale, an increase of 45% compared to the single EOR method, which proved the combination process is an efficient method to develop a heavy oil field.

Suggested Citation

  • Yishu Li & Zhongwei Du & Bo Wang & Jiasheng Ding & Fanhua Zeng, 2024. "An Ethane-Based CSI Process and Two Types of Flooding Process as a Hybrid Method for Enhancing Heavy Oil Recovery," Energies, MDPI, vol. 17(6), pages 1-15, March.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:6:p:1457-:d:1359030
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/6/1457/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/6/1457/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dong, Xiaohu & Liu, Huiqing & Chen, Zhangxin & Wu, Keliu & Lu, Ning & Zhang, Qichen, 2019. "Enhanced oil recovery techniques for heavy oil and oilsands reservoirs after steam injection," Applied Energy, Elsevier, vol. 239(C), pages 1190-1211.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anufriev, I.S. & Kopyev, E.P. & Alekseenko, S.V. & Sharypov, O.V. & Vigriyanov, M.S., 2022. "New ecology safe waste-to-energy technology of liquid fuel combustion with superheated steam," Energy, Elsevier, vol. 250(C).
    2. Camilo Andrés Guerrero-Martin & Angie Tatiana Ortega-Ramírez & Paula Alejandra Perilla Rodríguez & Shalom Jireth Reyes López & Laura Estefanía Guerrero-Martin & Raúl Salinas-Silva & Stefanny Camacho-G, 2023. "Analysis of Environmental Sustainability through a Weighting Matrix in the Oil and Gas Industry," Sustainability, MDPI, vol. 15(11), pages 1-16, June.
    3. Yao, Yue & Sun, Deqiang & Xu, Jin-Hua & Wang, Bin & Peng, Guohong & Sun, Bingmei, 2023. "Evaluation of enhanced oil recovery methods for mature continental heavy oil fields in China based on geology, technology and sustainability criteria," Energy, Elsevier, vol. 278(PB).
    4. Wang, Sen & Qin, Chaoxu & Feng, Qihong & Javadpour, Farzam & Rui, Zhenhua, 2021. "A framework for predicting the production performance of unconventional resources using deep learning," Applied Energy, Elsevier, vol. 295(C).
    5. Chai, Maojie & Nourozieh, Hossein & Chen, Zhangxin & Yang, Min, 2022. "A semi-compositional approach to model asphaltene precipitation and deposition in solvent-based bitumen recovery processes," Applied Energy, Elsevier, vol. 328(C).
    6. Laura Osma & Luis García & Romel Pérez & Carolina Barbosa & Jesús Botett & Jorge Sandoval & Eduardo Manrique, 2019. "Benefit–Cost and Energy Efficiency Index to Support the Screening of Hybrid Cyclic Steam Stimulation Methods," Energies, MDPI, vol. 12(24), pages 1-16, December.
    7. Zhou, Guangzhao & Guo, Zanquan & Sun, Simin & Jin, Qingsheng, 2023. "A CNN-BiGRU-AM neural network for AI applications in shale oil production prediction," Applied Energy, Elsevier, vol. 344(C).
    8. Yu, Peng, 2022. "Posterior probability-based hydraulic unit division and prediction: A case study," Energy, Elsevier, vol. 246(C).
    9. Huang, Lijuan & Wang, Yu & Li, Zongfa & Zhang, Liang & Yin, Yuchuan & Chen, Chao & Ren, Shaoran, 2021. "Experimental study on piloted ignition temperature and auto ignition temperature of heavy oils at high pressure," Energy, Elsevier, vol. 229(C).
    10. Yong Huang & Wulin Xiao & Sen Chen & Boliang Li & Liping Du & Binfei Li, 2022. "A Study on the Adaptability of Nonhydrocarbon Gas-Assisted Steam Flooding to the Development of Heavy Oil Reservoirs," Energies, MDPI, vol. 15(13), pages 1-15, June.
    11. Keyang Cheng & Yongjian Liu & Zhilin Qi & Jie Tian & Taotao Luo & Shaobin Hu & Jun Li, 2022. "Laboratory Evaluation of the Plugging Performance of an Inorganic Profile Control Agent for Thermal Oil Recovery," Energies, MDPI, vol. 15(15), pages 1-10, July.
    12. Mingchen Ding & Ping Liu & Yefei Wang & Zhenyu Zhang & Jiangyang Dong & Yingying Duan, 2023. "Adaptability to Enhance Heavy Oil Recovery by Combination and Foam Systems with Fine-Emulsification Properties," Energies, MDPI, vol. 16(21), pages 1-12, October.
    13. Peng Li & Yanyu Zhang & Xiaofei Sun & Huijuan Chen & Yang Liu, 2020. "A Numerical Model for Investigating the Steam Conformance along the Dual-String Horizontal Wells in SAGD Operations," Energies, MDPI, vol. 13(15), pages 1-38, August.
    14. Tingen Fan & Wenjiang Xu & Wei Zheng & Weidong Jiang & Xiuchao Jiang & Taichao Wang & Xiaohu Dong, 2022. "A Production Performance Model of the Cyclic Steam Stimulation Process in Multilayer Heavy Oil Reservoirs," Energies, MDPI, vol. 15(5), pages 1-21, February.
    15. Zehao Xie & Qihong Feng & Jiyuan Zhang & Xiaoxuan Shao & Xianmin Zhang & Zenglin Wang, 2021. "Prediction of Conformance Control Performance for Cyclic-Steam-Stimulated Horizontal Well Using the XGBoost: A Case Study in the Chunfeng Heavy Oil Reservoir," Energies, MDPI, vol. 14(23), pages 1-22, December.
    16. Li, Yujie & Zhai, Cheng & Xu, Jizhao & Sun, Yong & Yu, Xu, 2022. "Feasibility investigation of enhanced coalbed methane recovery by steam injection," Energy, Elsevier, vol. 255(C).
    17. Kirill A. Bashmur & Oleg A. Kolenchukov & Vladimir V. Bukhtoyarov & Vadim S. Tynchenko & Sergei O. Kurashkin & Elena V. Tsygankova & Vladislav V. Kukartsev & Roman B. Sergienko, 2022. "Biofuel Technologies and Petroleum Industry: Synergy of Sustainable Development for the Eastern Siberian Arctic," Sustainability, MDPI, vol. 14(20), pages 1-25, October.
    18. Xiaoxu Tang & Zhao Hua & Jian Zhang & Qiang Fu & Jie Tian, 2022. "A Study on Generation and Feasibility of Supercritical Multi-Thermal Fluid," Energies, MDPI, vol. 15(21), pages 1-26, October.
    19. Wei Zhang & Deli Gao & Yigang Liu & Jianhua Bai & Cheng Wang, 2023. "Study of the Failure Mechanism of an Integrated Injection-Production String in Thermal Recovery Wells for Heavy Oil," Energies, MDPI, vol. 16(7), pages 1-18, April.
    20. Wang, Wenyang & Pang, Xiongqi & Chen, Zhangxin & Chen, Dongxia & Ma, Xinhua & Zhu, Weiping & Zheng, Tianyu & Wu, Keliu & Zhang, Kun & Ma, Kuiyou, 2020. "Improved methods for determining effective sandstone reservoirs and evaluating hydrocarbon enrichment in petroliferous basins," Applied Energy, Elsevier, vol. 261(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:6:p:1457-:d:1359030. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.