IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i6p1308-d1353809.html
   My bibliography  Save this article

Comparison of the Real-Driving Emissions (RDE) of a Gasoline Direct Injection (GDI) Vehicle at Different Routes in Europe

Author

Listed:
  • Barouch Giechaskiel

    (Joint Research Centre (JRC), European Commission, 21027 Ispra, Italy)

  • Victor Valverde

    (Unisystem S.A., 20145 Milan, Italy)

  • Anastasios Melas

    (Joint Research Centre (JRC), European Commission, 21027 Ispra, Italy)

  • Michaël Clairotte

    (Joint Research Centre (JRC), European Commission, 21027 Ispra, Italy)

  • Pierre Bonnel

    (Joint Research Centre (JRC), European Commission, 21027 Ispra, Italy)

  • Panagiota Dilara

    (Directorate-General for Environment (DG-ENV), European Commission, 1160 Brussels, Belgium)

Abstract

On-road real-driving emissions (RDE) tests with portable emissions measurement systems (PEMS) are part of the vehicle emissions regulations in the European Union (EU). For a given vehicle, the final emission results depend on the influence of the ambient conditions and the trip characteristics (including the driver’s behaviour) on the vehicle performance and the instrument measurement uncertainty. However, there are not many studies that have examined the emissions variability of a single vehicle following different routes. In this study, a 1.2 L gasoline direct injection (GDI) Euro 5b passenger car without a particulate filter and a PEMS was circulated in seven European laboratories. At their premises, the laboratories performed two to five repetitions of on-road trips compliant with the EU RDE regulation. The ambient temperature ranged between 7 °C and 23 °C. The average emission levels of the vehicle were 135 g/km for CO 2 , 77 mg/km for CO, 55 mg/km for NO x , and 9.2 × 10 11 #/km for particle number. The coefficient of variance in the emissions following the same route was 2.9% for CO 2 , 23.8% for CO, 23.0% for NO x , and 5.8% for particle number. The coefficient of variance in the emissions following different routes in Europe was 6.9% for CO 2 , 9.1% for CO, 0.0% for NO x , and 9.1% for particle number. The previous values include the specific vehicle emissions variability under the narrow test conditions of this study, but only partly the PEMS measurement uncertainty because the same instrument was used in all the trips. The results of this study can be used by laboratories conducting RDE tests to assess their uncertainty budget when testing or comparing vehicles of similar technology.

Suggested Citation

  • Barouch Giechaskiel & Victor Valverde & Anastasios Melas & Michaël Clairotte & Pierre Bonnel & Panagiota Dilara, 2024. "Comparison of the Real-Driving Emissions (RDE) of a Gasoline Direct Injection (GDI) Vehicle at Different Routes in Europe," Energies, MDPI, vol. 17(6), pages 1-19, March.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:6:p:1308-:d:1353809
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/6/1308/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/6/1308/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mera, Zamir & Fonseca, Natalia & López, José-María & Casanova, Jesús, 2019. "Analysis of the high instantaneous NOx emissions from Euro 6 diesel passenger cars under real driving conditions," Applied Energy, Elsevier, vol. 242(C), pages 1074-1089.
    2. Barouch Giechaskiel & Pierre Bonnel & Adolfo Perujo & Panagiota Dilara, 2019. "Solid Particle Number (SPN) Portable Emissions Measurement Systems (PEMS) in the European Legislation: A Review," IJERPH, MDPI, vol. 16(23), pages 1-23, November.
    3. Costagliola, Maria Antonietta & Costabile, Marianeve & Prati, Maria Vittoria, 2018. "Impact of road grade on real driving emissions from two Euro 5 diesel vehicles," Applied Energy, Elsevier, vol. 231(C), pages 586-593.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rosero, Fredy & Fonseca, Natalia & López, José-María & Casanova, Jesús, 2021. "Effects of passenger load, road grade, and congestion level on real-world fuel consumption and emissions from compressed natural gas and diesel urban buses," Applied Energy, Elsevier, vol. 282(PB).
    2. Mera, Zamir & Varella, Roberto & Baptista, Patrícia & Duarte, Gonçalo & Rosero, Fredy, 2022. "Including engine data for energy and pollutants assessment into the vehicle specific power methodology," Applied Energy, Elsevier, vol. 311(C).
    3. Karol Tucki & Remigiusz Mruk & Olga Orynycz & Andrzej Wasiak & Katarzyna Botwińska & Arkadiusz Gola, 2019. "Simulation of the Operation of a Spark Ignition Engine Fueled with Various Biofuels and Its Contribution to Technology Management," Sustainability, MDPI, vol. 11(10), pages 1-17, May.
    4. Pierre-Olivier Vandanjon & Emmanuel Vinot, 2020. "Slope Optimization (or “Sloop”): Customized Optimization for Road Longitudinal Profile Eco-Design," Energies, MDPI, vol. 13(24), pages 1-21, December.
    5. Xingyu Liang & Ziyang Liu & Kun Wang & Xiaohui Wang & Zhijie Zhu & Chaoyang Xu & Bo Liu, 2021. "Impact of Pilot Injection on Combustion and Emission Characteristics of a Low-Speed Two-Stroke Marine Diesel Engine," Energies, MDPI, vol. 14(2), pages 1-20, January.
    6. Hu, Wenshuo & Zhang, Yu & Wang, Xiaoxiang & Wu, Weihong & Song, Hao & Yang, Yang & Liu, Shaojun & Zheng, Chenghang & Gao, Xiang, 2023. "Mechanistic assessment of NO oxidative activation on tungsten-promoted ceria catalysts and its consequence for low-temperature NH3-SCR," Applied Energy, Elsevier, vol. 330(PA).
    7. Christian Engström & Per Öberg & Georgios Fontaras & Barouch Giechaskiel, 2022. "Considerations for Achieving Equivalence between Hub- and Roller-Type Dynamometers for Vehicle Exhaust Emissions," Energies, MDPI, vol. 15(20), pages 1-23, October.
    8. Roso, Vinícius Rückert & Santos, Nathália Duarte Souza Alvarenga & Valle, Ramon Molina & Alvarez, Carlos Eduardo Castilla & Monsalve-Serrano, Javier & García, Antonio, 2019. "Evaluation of a stratified prechamber ignition concept for vehicular applications in real world and standardized driving cycles," Applied Energy, Elsevier, vol. 254(C).
    9. Victor Valverde & Yosuke Kondo & Yoshinori Otsuki & Torsten Krenz & Anastasios Melas & Ricardo Suarez-Bertoa & Barouch Giechaskiel, 2023. "Measurement of Gaseous Exhaust Emissions of Light-Duty Vehicles in Preparation for Euro 7: A Comparison of Portable and Laboratory Instrumentation," Energies, MDPI, vol. 16(6), pages 1-20, March.
    10. Eugenio Fernández & Alicia Valero & Juan José Alba & Abel Ortego, 2021. "A New Approach for Static NOx Measurement in PTI," Sustainability, MDPI, vol. 13(23), pages 1-34, December.
    11. Jacek Pielecha & Kinga Skobiej & Maciej Gis & Wojciech Gis, 2022. "Particle Number Emission from Vehicles of Various Drives in the RDE Tests," Energies, MDPI, vol. 15(17), pages 1-20, September.
    12. Fan, Pengfei & Yin, Hang & Lu, Hongyu & Wu, Yizheng & Zhai, Zhiqiang & Yu, Lei & Song, Guohua, 2023. "Which factor contributes more to the fuel consumption gap between in-laboratory vs. real-world driving conditions? An independent component analysis," Energy Policy, Elsevier, vol. 182(C).
    13. Kaźmierski, Bartosz & Kapusta, Łukasz Jan, 2023. "The importance of individual spray properties in performance improvement of a urea-SCR system employing flash-boiling injection," Applied Energy, Elsevier, vol. 329(C).
    14. Alexandros T. Zachiotis & Evangelos G. Giakoumis, 2021. "Monte Carlo Simulation Methodology to Assess the Impact of Ambient Wind on Emissions from a Light-Commercial Vehicle Running on the Worldwide-Harmonized Light-Duty Vehicles Test Cycle (WLTC)," Energies, MDPI, vol. 14(3), pages 1-24, January.
    15. Mera, Zamir & Fonseca, Natalia & López, José-María & Casanova, Jesús, 2019. "Analysis of the high instantaneous NOx emissions from Euro 6 diesel passenger cars under real driving conditions," Applied Energy, Elsevier, vol. 242(C), pages 1074-1089.
    16. Kinga Skobiej & Jacek Pielecha, 2022. "Analysis of the Exhaust Emissions of Hybrid Vehicles for the Current and Future RDE Driving Cycle," Energies, MDPI, vol. 15(22), pages 1-21, November.
    17. Muhammed A. Hassan & Hindawi Salem & Nadjem Bailek & Ozgur Kisi, 2023. "Random Forest Ensemble-Based Predictions of On-Road Vehicular Emissions and Fuel Consumption in Developing Urban Areas," Sustainability, MDPI, vol. 15(2), pages 1-22, January.
    18. Küng, Lukas & Bütler, Thomas & Georges, Gil & Boulouchos, Konstantinos, 2019. "How much energy does a car need on the road?," Applied Energy, Elsevier, vol. 256(C).
    19. Barouch Giechaskiel & Tobias Jakobsson & Hua Lu Karlsson & M. Yusuf Khan & Linus Kronlund & Yoshinori Otsuki & Jürgen Bredenbeck & Stefan Handler-Matejka, 2022. "Assessment of On-Board and Laboratory Gas Measurement Systems for Future Heavy-Duty Emissions Regulations," IJERPH, MDPI, vol. 19(10), pages 1-16, May.
    20. García, Antonio & Monsalve-Serrano, Javier & Martínez-Boggio, Santiago & Rückert Roso, Vinícius & Duarte Souza Alvarenga Santos, Nathália, 2020. "Potential of bio-ethanol in different advanced combustion modes for hybrid passenger vehicles," Renewable Energy, Elsevier, vol. 150(C), pages 58-77.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:6:p:1308-:d:1353809. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.