IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i5p1249-d1351859.html
   My bibliography  Save this article

Reinforcement Learning for Energy Community Management: A European-Scale Study

Author

Listed:
  • Giulia Palma

    (Dipartimento di Scienze Sociali, Politiche e Cognitive, Università di Siena, 53100 Siena, Italy
    Sunlink Srl, 55100 Lucca, Italy)

  • Leonardo Guiducci

    (Dipartimento di Scienze Sociali, Politiche e Cognitive, Università di Siena, 53100 Siena, Italy
    Sunlink Srl, 55100 Lucca, Italy)

  • Marta Stentati

    (Dipartimento di Ingegneria dell’Informazione e Scienze Matematiche, Università di Siena, 53100 Siena, Italy)

  • Antonio Rizzo

    (Dipartimento di Scienze Sociali, Politiche e Cognitive, Università di Siena, 53100 Siena, Italy)

  • Simone Paoletti

    (Dipartimento di Ingegneria dell’Informazione e Scienze Matematiche, Università di Siena, 53100 Siena, Italy)

Abstract

Efficient management of renewable energy resources is imperative for promoting environmental sustainability and optimizing the utilization of clean energy sources. This paper presents a pioneering European-scale study on energy management within renewable energy communities (RECs). With a primary focus on enhancing the social welfare of the community, we introduce a reinforcement learning (RL) controller designed to strategically manage Battery Energy Storage Systems (BESSs) and orchestrate energy flows. This research transcends geographical boundaries by conducting an extended analysis of various energy communities and diverse energy markets across Europe, encompassing different regions of Italy. Our methodology involves the implementation of an RL controller, leveraging optimal control theory for training and utilizing only real-time data available at the current time step during the test phase. Through simulations conducted in diverse contexts, we demonstrate the superior performance of our RL agent compared to a state-of-the-art rule-based controller. The agent exhibits remarkable adaptability to various scenarios, consistently surpassing existing rule-based controllers. Notably, we illustrate that our approach aligns with the intricate patterns observed in both Italian and European energy markets, achieving performance levels comparable to an optimal controller assuming perfect theoretical knowledge of future data.

Suggested Citation

  • Giulia Palma & Leonardo Guiducci & Marta Stentati & Antonio Rizzo & Simone Paoletti, 2024. "Reinforcement Learning for Energy Community Management: A European-Scale Study," Energies, MDPI, vol. 17(5), pages 1-19, March.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:5:p:1249-:d:1351859
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/5/1249/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/5/1249/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Giovanni Gino Zanvettor & Marco Casini & Antonio Giannitrapani & Simone Paoletti & Antonio Vicino, 2022. "Optimal Management of Energy Communities Hosting a Fleet of Electric Vehicles," Energies, MDPI, vol. 15(22), pages 1-16, November.
    2. Liu, Luyao & Zhao, Yi & Chang, Dongliang & Xie, Jiyang & Ma, Zhanyu & Sun, Qie & Yin, Hongyi & Wennersten, Ronald, 2018. "Prediction of short-term PV power output and uncertainty analysis," Applied Energy, Elsevier, vol. 228(C), pages 700-711.
    3. Zia, Muhammad Fahad & Elbouchikhi, Elhoussin & Benbouzid, Mohamed, 2018. "Microgrids energy management systems: A critical review on methods, solutions, and prospects," Applied Energy, Elsevier, vol. 222(C), pages 1033-1055.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Polimeni, Simone & Moretti, Luca & Martelli, Emanuele & Leva, Sonia & Manzolini, Giampaolo, 2023. "A novel stochastic model for flexible unit commitment of off-grid microgrids," Applied Energy, Elsevier, vol. 331(C).
    2. Gui, Yonghao & Wei, Baoze & Li, Mingshen & Guerrero, Josep M. & Vasquez, Juan C., 2018. "Passivity-based coordinated control for islanded AC microgrid," Applied Energy, Elsevier, vol. 229(C), pages 551-561.
    3. Ahmed, R. & Sreeram, V. & Mishra, Y. & Arif, M.D., 2020. "A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    4. Wang, Yi & Qiu, Dawei & Sun, Mingyang & Strbac, Goran & Gao, Zhiwei, 2023. "Secure energy management of multi-energy microgrid: A physical-informed safe reinforcement learning approach," Applied Energy, Elsevier, vol. 335(C).
    5. Polleux, Louis & Guerassimoff, Gilles & Marmorat, Jean-Paul & Sandoval-Moreno, John & Schuhler, Thierry, 2022. "An overview of the challenges of solar power integration in isolated industrial microgrids with reliability constraints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    6. Zia, Muhammad Fahad & Nasir, Mashood & Elbouchikhi, Elhoussin & Benbouzid, Mohamed & Vasquez, Juan C. & Guerrero, Josep M., 2022. "Energy management system for a hybrid PV-Wind-Tidal-Battery-based islanded DC microgrid: Modeling and experimental validation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    7. Clarke, Will Challis & Brear, Michael John & Manzie, Chris, 2020. "Control of an isolated microgrid using hierarchical economic model predictive control," Applied Energy, Elsevier, vol. 280(C).
    8. Wang, Xiaoyang & Sun, Yunlin & Luo, Duo & Peng, Jinqing, 2022. "Comparative study of machine learning approaches for predicting short-term photovoltaic power output based on weather type classification," Energy, Elsevier, vol. 240(C).
    9. Hou, Jun & Song, Ziyou & Park, Hyeongjun & Hofmann, Heath & Sun, Jing, 2018. "Implementation and evaluation of real-time model predictive control for load fluctuations mitigation in all-electric ship propulsion systems," Applied Energy, Elsevier, vol. 230(C), pages 62-77.
    10. Younes Zahraoui & Ibrahim Alhamrouni & Saad Mekhilef & M. Reyasudin Basir Khan & Mehdi Seyedmahmoudian & Alex Stojcevski & Ben Horan, 2021. "Energy Management System in Microgrids: A Comprehensive Review," Sustainability, MDPI, vol. 13(19), pages 1-33, September.
    11. Silva, Jéssica Alice A. & López, Juan Camilo & Guzman, Cindy Paola & Arias, Nataly Bañol & Rider, Marcos J. & da Silva, Luiz C.P., 2023. "An IoT-based energy management system for AC microgrids with grid and security constraints," Applied Energy, Elsevier, vol. 337(C).
    12. Manzano, J.M. & Salvador, J.R. & Romaine, J.B. & Alvarado-Barrios, L., 2022. "Economic predictive control for isolated microgrids based on real world demand/renewable energy data and forecast errors," Renewable Energy, Elsevier, vol. 194(C), pages 647-658.
    13. Wang, Shuoqi & Guo, Dongxu & Han, Xuebing & Lu, Languang & Sun, Kai & Li, Weihan & Sauer, Dirk Uwe & Ouyang, Minggao, 2020. "Impact of battery degradation models on energy management of a grid-connected DC microgrid," Energy, Elsevier, vol. 207(C).
    14. Katja Sirviö & Kimmo Kauhaniemi & Aushiq Ali Memon & Hannu Laaksonen & Lauri Kumpulainen, 2020. "Functional Analysis of the Microgrid Concept Applied to Case Studies of the Sundom Smart Grid," Energies, MDPI, vol. 13(16), pages 1-31, August.
    15. Lu, Renzhi & Bai, Ruichang & Ding, Yuemin & Wei, Min & Jiang, Junhui & Sun, Mingyang & Xiao, Feng & Zhang, Hai-Tao, 2021. "A hybrid deep learning-based online energy management scheme for industrial microgrid," Applied Energy, Elsevier, vol. 304(C).
    16. Wang, Lining & Mao, Mingxuan & Xie, Jili & Liao, Zheng & Zhang, Hao & Li, Huanxin, 2023. "Accurate solar PV power prediction interval method based on frequency-domain decomposition and LSTM model," Energy, Elsevier, vol. 262(PB).
    17. Julian Koch & Astrid Bensmann & Christoph Eckert & Michael Rath & Richard Hanke-Rauschenbach, 2024. "Planning of Reserve Storage to Compensate for Forecast Errors," Energies, MDPI, vol. 17(3), pages 1-16, February.
    18. Freitas Gomes, Icaro Silvestre & Perez, Yannick & Suomalainen, Emilia, 2020. "Coupling small batteries and PV generation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 126(C).
    19. Pinciroli, Luca & Baraldi, Piero & Compare, Michele & Zio, Enrico, 2023. "Optimal operation and maintenance of energy storage systems in grid-connected microgrids by deep reinforcement learning," Applied Energy, Elsevier, vol. 352(C).
    20. Nemanja Mišljenović & Matej Žnidarec & Goran Knežević & Damir Šljivac & Andreas Sumper, 2023. "A Review of Energy Management Systems and Organizational Structures of Prosumers," Energies, MDPI, vol. 16(7), pages 1-32, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:5:p:1249-:d:1351859. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.