IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i5p1156-d1348481.html
   My bibliography  Save this article

The Impact of Soil Contamination with Lead on the Biomass of Maize Intended for Energy Purposes, and the Biochemical and Physicochemical Properties of the Soil

Author

Listed:
  • Jadwiga Wyszkowska

    (Department of Soil Science and Microbiology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland)

  • Edyta Boros-Lajszner

    (Department of Soil Science and Microbiology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland)

  • Jan Kucharski

    (Department of Soil Science and Microbiology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland)

Abstract

The subject of our research was to assess the suitability of maize grown in lead-contaminated soil for energy purposes. Lead is toxic to the natural environment. Therefore, the recultivation of soil polluted with this element is very important in stabilizing the natural environment. In the present research, maize was used as a remediating plant, and its effects were enhanced by soil fertilization with biocompost and biochar. The aim of the research was to determine the influence of Pb 2+ on maize biomass, its combustion heat and heating value, and the biochemical and physicochemical properties of the soil. It was accomplished in a pot experiment by testing the effects of 800 mg Pb 2+ kg −1 d.m. soil and biocompost and biochar applied of 20 g kg −1 d.m. soil. Lead was found to drastically deteriorate soil quality, which reduced the biomass of maize. Lead negatively affected the activity of the soil enzymes tested and modified the physicochemical properties of the soil. Fertilization with biocompost and biochar mitigated lead-induced interference with soil enzymatic activity. The applied biocomponents also had positive effects on the chemical and physicochemical properties of the soil. Maize cultivated on lead-polluted soil did not lose its energetic properties. The heating value of maize was stable, which shows its potential in the recultivation of lead-contaminated soils.

Suggested Citation

  • Jadwiga Wyszkowska & Edyta Boros-Lajszner & Jan Kucharski, 2024. "The Impact of Soil Contamination with Lead on the Biomass of Maize Intended for Energy Purposes, and the Biochemical and Physicochemical Properties of the Soil," Energies, MDPI, vol. 17(5), pages 1-18, February.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:5:p:1156-:d:1348481
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/5/1156/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/5/1156/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jadwiga Wyszkowska & Edyta Boros-Lajszner & Jan Kucharski, 2022. "Calorific Value of Festuca rubra Biomass in the Phytostabilization of Soil Contaminated with Nickel, Cobalt and Cadmium Which Disrupt the Microbiological and Biochemical Properties of Soil," Energies, MDPI, vol. 15(9), pages 1-23, May.
    2. Šarauskis, Egidijus & Buragienė, Sidona & Masilionytė, Laura & Romaneckas, Kęstutis & Avižienytė, Dovile & Sakalauskas, Antanas, 2014. "Energy balance, costs and CO2 analysis of tillage technologies in maize cultivation," Energy, Elsevier, vol. 69(C), pages 227-235.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Justinas Anušauskas & Andrius Grigas & Kristina Lekavičienė & Ernestas Zaleckas & Simona Paulikienė & Dainius Steponavičius, 2024. "Energy and Environmental Assessment of Bacteria-Inoculated Mineral Fertilizer Used in Spring Barley Cultivation Technologies," Agriculture, MDPI, vol. 14(4), pages 1-22, April.
    2. Mykola Kochiieru & Agnė Veršulienė & Virginijus Feiza & Dalia Feizienė, 2023. "Trend for Soil CO 2 Efflux in Grassland and Forest Land in Relation with Meteorological Conditions and Root Parameters," Sustainability, MDPI, vol. 15(9), pages 1-14, April.
    3. Manzone, Marco & Calvo, Angela, 2016. "Energy and CO2 analysis of poplar and maize crops for biomass production in north Italy," Renewable Energy, Elsevier, vol. 86(C), pages 675-681.
    4. Van linden, Veerle & Herman, Lieve, 2014. "A fuel consumption model for off-road use of mobile machinery in agriculture," Energy, Elsevier, vol. 77(C), pages 880-889.
    5. Stanisław Bielski & Renata Marks-Bielska & Paweł Wiśniewski, 2022. "Investigation of Energy and Economic Balance and GHG Emissions in the Production of Different Cultivars of Buckwheat ( Fagopyrum esculentum Moench): A Case Study in Northeastern Poland," Energies, MDPI, vol. 16(1), pages 1-24, December.
    6. Kazemi, Hossein & Kamkar, Behnam & Lakzaei, Somayeh & Badsar, Meysam & Shahbyki, Malihe, 2015. "Energy flow analysis for rice production in different geographical regions of Iran," Energy, Elsevier, vol. 84(C), pages 390-396.
    7. Barbara Breza-Boruta & Karol Kotwica & Justyna Bauza-Kaszewska, 2021. "Effect of Tillage System and Organic Matter Management Interactions on Soil Chemical Properties and Biological Activity in a Spring Wheat Short-Time Cultivation," Energies, MDPI, vol. 14(21), pages 1-18, November.
    8. Edyta Boros-Lajszner & Jadwiga Wyszkowska & Jan Kucharski, 2023. "Effect of Ash from Salix viminalis on the Biomass and Heating Value of Zea mays and on the Biochemical and Physicochemical Properties of Soils," Energies, MDPI, vol. 16(24), pages 1-18, December.
    9. Jadwiga Wyszkowska & Edyta Boros-Lajszner & Agata Borowik & Jan Kucharski, 2022. "The Role of Cellulose in Microbial Diversity Changes in the Soil Contaminated with Cadmium," Sustainability, MDPI, vol. 14(21), pages 1-28, October.
    10. Fan Fan & Bei Li & Weifeng Zhang & John R. Porter & Fusuo Zhang, 2021. "Evaluation of Sustainability of Irrigated Crops in Arid Regions, China," Sustainability, MDPI, vol. 13(1), pages 1-15, January.
    11. Šiaudinis, Gintaras & Jasinskas, Algirdas & Šarauskis, Egidijus & Steponavičius, Dainius & Karčauskienė, Danutė & Liaudanskienė, Inga, 2015. "The assessment of Virginia mallow (Sida hermaphrodita Rusby) and cup plant (Silphium perfoliatum L.) productivity, physico–mechanical properties and energy expenses," Energy, Elsevier, vol. 93(P1), pages 606-612.
    12. Bunyod Holmatov & Arjen Y. Hoekstra & Maarten S. Krol, 2022. "EU’s bioethanol potential from wheat straw and maize stover and the environmental footprint of residue-based bioethanol," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(1), pages 1-18, January.
    13. Keshavarz-Afshar, Reza & Mohammed, Yesuf Assen & Chen, Chengci, 2015. "Energy balance and greenhouse gas emissions of dryland camelina as influenced by tillage and nitrogen," Energy, Elsevier, vol. 91(C), pages 1057-1063.
    14. Hwai Chyuan Ong & Adi Kusmayadi & Nor Aishah Saidina Amin, 2023. "Biomass Energy for Environmental Sustainability," Energies, MDPI, vol. 16(7), pages 1-3, March.
    15. Houshyar, Ehsan & Zareifard, Hamid Reza & Grundmann, Philipp & Smith, Pete, 2015. "Determining efficiency of energy input for silage corn production: An econometric approach," Energy, Elsevier, vol. 93(P2), pages 2166-2174.
    16. Wang, Chong & Zhao, Jiongchao & Feng, Yupeng & Shang, Mengfei & Bo, Xiaozhi & Gao, Zhenzhen & Chen, Fu & Chu, Qingquan, 2021. "Optimizing tillage method and irrigation schedule for greenhouse gas mitigation, yield improvement, and water conservation in wheat–maize cropping systems," Agricultural Water Management, Elsevier, vol. 248(C).
    17. Sergio Juárez-Hernández & Claudia Sheinbaum Pardo, 2020. "Assessing the potential of alternative farming practices for sustainable energy and water use and GHG mitigation in conventional maize systems," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(8), pages 8029-8059, December.
    18. Paris, Bas & Vandorou, Foteini & Balafoutis, Athanasios T. & Vaiopoulos, Konstantinos & Kyriakarakos, George & Manolakos, Dimitris & Papadakis, George, 2022. "Energy use in open-field agriculture in the EU: A critical review recommending energy efficiency measures and renewable energy sources adoption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    19. Yan, Jie & Kong, Zhaoyang & Liu, Yize & Li, Ning & Yang, Xiaolin & Zhuang, Minghao, 2023. "A high-resolution energy use efficiency assessment of China’s staple food crop production and associated improvement potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    20. Daniel Hoehn & María Margallo & Jara Laso & Ana Fernández-Ríos & Israel Ruiz-Salmón & Rubén Aldaco, 2022. "Energy Systems in the Food Supply Chain and in the Food Loss and Waste Valorization Processes: A Systematic Review," Energies, MDPI, vol. 15(6), pages 1-15, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:5:p:1156-:d:1348481. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.