IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2023i1p20-d1303504.html
   My bibliography  Save this article

Design and Optimization of an Alkaline Electrolysis System for Small-Scale Hydropower Integration

Author

Listed:
  • Hojun Song

    (Green and Sustainable Materials R&D Department, Research Institute of Sustainable Manufacturing System, Korea Institute of Industrial Technology, Cheonan-si 31056, Republic of Korea
    These authors contributed equally to this work and shared first authorship.)

  • Yunji Kim

    (Water Energy Research Center, Korea Water Resources Corporation, Daejeon 34045, Republic of Korea
    These authors contributed equally to this work and shared first authorship.)

  • Heena Yang

    (Water Energy Research Center, Korea Water Resources Corporation, Daejeon 34045, Republic of Korea)

Abstract

Alkaline electrolysis systems are currently considered to be suitable for large-scale hydrogen production. Previous research has primarily focused on integrating renewable energy sources such as solar and wind into water electrolysis systems. However, intermittent issues stemming from the sporadic nature of renewable energy sources have led to the introduction of energy storage systems (ESSs) to address these intermittent challenges. Extensive research has been conducted on the efficiency and operational aspects of these systems. In contrast to other renewable energy sources, hydropower offers the advantages of stable output and high utilization, making it a promising solution for overcoming intermittent issues. In this study, we propose the design of an optimized alkaline electrolysis system tailored for small-scale hydropower generation. This approach allowed us to confirm the efficiency of a small-scale hydropower-based hydrogen production facility and the analysis of hydrogen production costs under diverse scenarios. Notably, the optimal selling price per kilogram of hydrogen was determined to be USD 15.6 when the operational time exceeded 20 h, albeit indicating a challenging market supply. Under the consideration of various scenarios and government subsidies, this study revealed that a USD 10/kgH 2 subsidy or 24 h of continuous operation achieved break-even points in the sixth and eighth years, respectively. Ultimately, the findings underscore the necessity for essential measures, including government backing and technological advancements in small-scale hydropower facilities, to enhance the economic viability of the green hydrogen market in South Korea.

Suggested Citation

  • Hojun Song & Yunji Kim & Heena Yang, 2023. "Design and Optimization of an Alkaline Electrolysis System for Small-Scale Hydropower Integration," Energies, MDPI, vol. 17(1), pages 1-13, December.
  • Handle: RePEc:gam:jeners:v:17:y:2023:i:1:p:20-:d:1303504
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/1/20/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/1/20/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. José Carlos Curvelo Santana & Pedro Gerber Machado & Cláudio Augusto Oller do Nascimento & Celma de Oliveira Ribeiro, 2023. "Economic and Environmental Assessment of Hydrogen Production from Brazilian Energy Grid," Energies, MDPI, vol. 16(9), pages 1-21, April.
    2. Superchi, Francesco & Papi, Francesco & Mannelli, Andrea & Balduzzi, Francesco & Ferro, Francesco Maria & Bianchini, Alessandro, 2023. "Development of a reliable simulation framework for techno-economic analyses on green hydrogen production from wind farms using alkaline electrolyzers," Renewable Energy, Elsevier, vol. 207(C), pages 731-742.
    3. Alexandros Kafetzis & Michael Bampaou & Giorgos Kardaras & Kyriakos Panopoulos, 2023. "Decarbonization of Former Lignite Regions with Renewable Hydrogen: The Western Macedonia Case," Energies, MDPI, vol. 16(20), pages 1-21, October.
    4. Marek Jaszczur & Qusay Hassan & Aws Zuhair Sameen & Hayder M. Salman & Olushola Tomilayo Olapade & Szymon Wieteska, 2023. "Massive Green Hydrogen Production Using Solar and Wind Energy: Comparison between Europe and the Middle East," Energies, MDPI, vol. 16(14), pages 1-26, July.
    5. Zhang, Yang & Campana, Pietro Elia & Lundblad, Anders & Yan, Jinyue, 2017. "Comparative study of hydrogen storage and battery storage in grid connected photovoltaic system: Storage sizing and rule-based operation," Applied Energy, Elsevier, vol. 201(C), pages 397-411.
    6. Lee, Dong-Yeon & Elgowainy, Amgad & Dai, Qiang, 2018. "Life cycle greenhouse gas emissions of hydrogen fuel production from chlor-alkali processes in the United States," Applied Energy, Elsevier, vol. 217(C), pages 467-479.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rafał Nagaj & Bożena Gajdzik & Radosław Wolniak & Wieslaw Wes Grebski, 2024. "The Impact of Deep Decarbonization Policy on the Level of Greenhouse Gas Emissions in the European Union," Energies, MDPI, vol. 17(5), pages 1-23, March.
    2. Liu, Hailiang & Brown, Tom & Andresen, Gorm Bruun & Schlachtberger, David P. & Greiner, Martin, 2019. "The role of hydro power, storage and transmission in the decarbonization of the Chinese power system," Applied Energy, Elsevier, vol. 239(C), pages 1308-1321.
    3. Yadav, Deepak & Banerjee, Rangan, 2020. "Net energy and carbon footprint analysis of solar hydrogen production from the high-temperature electrolysis process," Applied Energy, Elsevier, vol. 262(C).
    4. Lu, Qiang & Zhang, Bo & Yang, Shichun & Peng, Zhaoxia, 2022. "Life cycle assessment on energy efficiency of hydrogen fuel cell vehicle in China," Energy, Elsevier, vol. 257(C).
    5. Daraei, Mahsa & Campana, Pietro Elia & Thorin, Eva, 2020. "Power-to-hydrogen storage integrated with rooftop photovoltaic systems and combined heat and power plants," Applied Energy, Elsevier, vol. 276(C).
    6. Fernando Echevarría Camarero & Ana Ogando-Martínez & Pablo Durán Gómez & Pablo Carrasco Ortega, 2022. "Profitability of Batteries in Photovoltaic Systems for Small Industrial Consumers in Spain under Current Regulatory Framework and Energy Prices," Energies, MDPI, vol. 16(1), pages 1-19, December.
    7. Mulleriyawage, U.G.K. & Shen, W.X., 2021. "Impact of demand side management on optimal sizing of residential battery energy storage system," Renewable Energy, Elsevier, vol. 172(C), pages 1250-1266.
    8. Handriyanti Diah Puspitarini & Baptiste François & Marco Baratieri & Casey Brown & Mattia Zaramella & Marco Borga, 2020. "Complementarity between Combined Heat and Power Systems, Solar PV and Hydropower at a District Level: Sensitivity to Climate Characteristics along an Alpine Transect," Energies, MDPI, vol. 13(16), pages 1-19, August.
    9. Schopfer, S. & Tiefenbeck, V. & Staake, T., 2018. "Economic assessment of photovoltaic battery systems based on household load profiles," Applied Energy, Elsevier, vol. 223(C), pages 229-248.
    10. Song, Hongqing & Lao, Junming & Zhang, Liyuan & Xie, Chiyu & Wang, Yuhe, 2023. "Underground hydrogen storage in reservoirs: pore-scale mechanisms and optimization of storage capacity and efficiency," Applied Energy, Elsevier, vol. 337(C).
    11. Christoph Wenge & Robert Pietracho & Stephan Balischewski & Bartlomiej Arendarski & Pio Lombardi & Przemyslaw Komarnicki & Leszek Kasprzyk, 2020. "Multi Usage Applications of Li-Ion Battery Storage in a Large Photovoltaic Plant: A Practical Experience," Energies, MDPI, vol. 13(18), pages 1-18, September.
    12. Oliver Gregor Gorbach & Noha Saad Hussein & Jessica Thomsen, 2021. "Impact of Internal Carbon Prices on the Energy System of an Organisation’s Facilities in Germany, Japan and the United Kingdom Compared to Potential External Carbon Prices," Energies, MDPI, vol. 14(14), pages 1-41, July.
    13. Upadhyay, Mukesh & Kim, Ayeon & Paramanantham, SalaiSargunan S. & Kim, Heehyang & Lim, Dongjun & Lee, Sunyoung & Moon, Sangbong & Lim, Hankwon, 2022. "Three-dimensional CFD simulation of proton exchange membrane water electrolyser: Performance assessment under different condition," Applied Energy, Elsevier, vol. 306(PA).
    14. David Grosspietsch & Marissa Saenger & Bastien Girod, 2019. "Matching decentralized energy production and local consumption: A review of renewable energy systems with conversion and storage technologies," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(4), July.
    15. Ibáñez-Rioja, Alejandro & Puranen, Pietari & Järvinen, Lauri & Kosonen, Antti & Ruuskanen, Vesa & Ahola, Jero & Koponen, Joonas, 2022. "Simulation methodology for an off-grid solar–battery–water electrolyzer plant: Simultaneous optimization of component capacities and system control," Applied Energy, Elsevier, vol. 307(C).
    16. Zhang, Yang & Campana, Pietro Elia & Yang, Ying & Stridh, Bengt & Lundblad, Anders & Yan, Jinyue, 2018. "Energy flexibility from the consumer: Integrating local electricity and heat supplies in a building," Applied Energy, Elsevier, vol. 223(C), pages 430-442.
    17. Go, Jaehyun & Byun, Jiwook & Orehounig, Kristina & Heo, Yeonsook, 2023. "Battery-H2 storage system for self-sufficiency in residential buildings under different electric heating system scenarios," Applied Energy, Elsevier, vol. 337(C).
    18. Yoon, Ha-Jun & Seo, Seung-Kwon & Lee, Chul-Jin, 2022. "Multi-period optimization of hydrogen supply chain utilizing natural gas pipelines and byproduct hydrogen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    19. Nien-Che Yang & Yong-Chang Zhang & Eunike Widya Adinda, 2022. "Sizing and Sitting of Battery Energy Storage Systems in Distribution Networks with Transient Stability Consideration," Mathematics, MDPI, vol. 10(19), pages 1-25, September.
    20. Olivier Bethoux, 2020. "Hydrogen Fuel Cell Road Vehicles and Their Infrastructure: An Option towards an Environmentally Friendly Energy Transition," Energies, MDPI, vol. 13(22), pages 1-27, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2023:i:1:p:20-:d:1303504. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.