IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2023i1p187-d1309789.html
   My bibliography  Save this article

Numerical Study on Compact Design in Marine Urea-SCR Systems for Small Ship Applications

Author

Listed:
  • Wontak Choi

    (Graduate Program, Department of Energy and Mechanical Engineering, Gyeongsang National University, Tongyeong-si 53064, Republic of Korea)

  • Seunggi Choi

    (Graduate Program, Department of Energy and Mechanical Engineering, Gyeongsang National University, Tongyeong-si 53064, Republic of Korea)

  • Sangkyung Na

    (Revo Co., Ltd., Changwon-si 51150, Republic of Korea)

  • Dongmin Shin

    (Department of Smart Energy and Mechanical Engineering, Gyeongsang National University, Tongyeong-si 53064, Republic of Korea)

  • Hyomin Jeong

    (Department of Smart Energy and Mechanical Engineering, Gyeongsang National University, Tongyeong-si 53064, Republic of Korea)

  • Yonmo Sung

    (Department of Smart Energy and Mechanical Engineering, Gyeongsang National University, Tongyeong-si 53064, Republic of Korea)

Abstract

With increasingly stringent emissions legislation, such as that stipulated by the International Maritime Organization, for nitrogen oxide emission reduction in marine diesel engines, the imperative of curtailing nitrogen oxide emissions from marine diesel engines is intensifying. Consequently, the significance of aftertreatment technologies, including diesel particulate filters (DPFs) and selective catalytic reduction (SCR), is poised to grow substantially. In particular, a redesign is required to reduce the size of DPF and SCR systems for application in small ships. In this study, we varied the shape of the filters in DPF and SCR systems, aiming to achieve a distinct flow pattern and enable overall miniaturization. The performance metrics, including the nitric oxide (NO) reduction rate, NH 3 slip rate, and pressure drop, of the redesigned models were compared with those of the conventional model. Computational fluid dynamics simulations were used to compare the performance of the redesigned model with that of the conventional model in terms of NO reduction and pressure drop. The redesigned system achieved a NO reduction rate of 6.9% below that of the conventional system, offering additional noteworthy benefits such as a 50% reduction in both pressure and overall length.

Suggested Citation

  • Wontak Choi & Seunggi Choi & Sangkyung Na & Dongmin Shin & Hyomin Jeong & Yonmo Sung, 2023. "Numerical Study on Compact Design in Marine Urea-SCR Systems for Small Ship Applications," Energies, MDPI, vol. 17(1), pages 1-16, December.
  • Handle: RePEc:gam:jeners:v:17:y:2023:i:1:p:187-:d:1309789
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/1/187/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/1/187/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Thangaraja, J. & Kannan, C., 2016. "Effect of exhaust gas recirculation on advanced diesel combustion and alternate fuels - A review," Applied Energy, Elsevier, vol. 180(C), pages 169-184.
    2. Khristamto Aditya Wardana, Muhammad & Lim, Ocktaeck, 2022. "Investigation of ammonia homogenization and NOx reduction quantity by remodeling urea injector shapes in heavy-duty diesel engines," Applied Energy, Elsevier, vol. 323(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Wenshuo & Zhang, Yu & Wang, Xiaoxiang & Wu, Weihong & Song, Hao & Yang, Yang & Liu, Shaojun & Zheng, Chenghang & Gao, Xiang, 2023. "Mechanistic assessment of NO oxidative activation on tungsten-promoted ceria catalysts and its consequence for low-temperature NH3-SCR," Applied Energy, Elsevier, vol. 330(PA).
    2. Siva Krishna Reddy Dwarshala & Siva Subramaniam Rajakumar & Obula Reddy Kummitha & Elumalai Perumal Venkatesan & Ibham Veza & Olusegun David Samuel, 2023. "A Review on Recent Developments of RCCI Engines Operated with Alternative Fuels," Energies, MDPI, vol. 16(7), pages 1-27, April.
    3. Kim, Keunsoo & Kim, Junghwan & Oh, Seungmook & Kim, Changup & Lee, Yonggyu, 2017. "Evaluation of injection and ignition schemes for the ultra-lean combustion direct-injection LPG engine to control particulate emissions," Applied Energy, Elsevier, vol. 194(C), pages 123-135.
    4. Khoa, Nguyen Xuan & Lim, Ocktaeck, 2019. "The effects of combustion duration on residual gas, effective release energy, engine power and engine emissions characteristics of the motorcycle engine," Applied Energy, Elsevier, vol. 248(C), pages 54-63.
    5. Pachiannan, Tamilselvan & Zhong, Wenjun & Rajkumar, Sundararajan & He, Zhixia & Leng, Xianying & Wang, Qian, 2019. "A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    6. Xu Zheng & Nan Zhou & Quan Zhou & Yi Qiu & Ruijun Liu & Zhiyong Hao, 2020. "Experimental Investigation on the High-frequency Pressure Oscillation Characteristics of a Combustion Process in a DI Diesel Engine," Energies, MDPI, vol. 13(4), pages 1-25, February.
    7. Soto, Felipe & Marques, Gian & Torres-Jiménez, E. & Vieira, Bráulio & Lacerda, André & Armas, Octavio & Guerrero-Villar, F., 2019. "A comparative study of performance and regulated emissions in a medium-duty diesel engine fueled with sugarcane diesel-farnesane and sugarcane biodiesel-LS9," Energy, Elsevier, vol. 176(C), pages 392-409.
    8. Nguyen Xuan Khoa & Ocktaeck Lim, 2022. "A Review of the External and Internal Residual Exhaust Gas in the Internal Combustion Engine," Energies, MDPI, vol. 15(3), pages 1-21, February.
    9. Xiao, Guolin & Gao, Xiaori & Lu, Wei & Liu, Xiaodong & Asghar, Aamer Bilal & Jiang, Liu & Jing, Wenlin, 2023. "A physically based air proportioning methodology for optimized combustion in gas-fired boilers considering both heat release and NOx emissions," Applied Energy, Elsevier, vol. 350(C).
    10. Tripathi, Shweta & Subramanian, K.A., 2017. "Experimental investigation of utilization of Soya soap stock based acid oil biodiesel in an automotive compression ignition engine," Applied Energy, Elsevier, vol. 198(C), pages 332-346.
    11. Luján, José Manuel & Serrano, José Ramon & Piqueras, Pedro & Diesel, Bárbara, 2019. "Turbine and exhaust ports thermal insulation impact on the engine efficiency and aftertreatment inlet temperature," Applied Energy, Elsevier, vol. 240(C), pages 409-423.
    12. Giorgio Zamboni, 2018. "A Study on Combustion Parameters in an Automotive Turbocharged Diesel Engine," Energies, MDPI, vol. 11(10), pages 1-21, September.
    13. Heena Panchasara & Nanjappa Ashwath, 2021. "Effects of Pyrolysis Bio-Oils on Fuel Atomisation—A Review," Energies, MDPI, vol. 14(4), pages 1-22, February.
    14. Rahmani, R. & Rahnejat, H. & Fitzsimons, B. & Dowson, D., 2017. "The effect of cylinder liner operating temperature on frictional loss and engine emissions in piston ring conjunction," Applied Energy, Elsevier, vol. 191(C), pages 568-581.
    15. Tadeusz Dziubak & Mirosław Karczewski, 2022. "Experimental Studies of the Effect of Air Filter Pressure Drop on the Composition and Emission Changes of a Compression Ignition Internal Combustion Engine," Energies, MDPI, vol. 15(13), pages 1-31, June.
    16. Zhang, Qinghui & Hao, Zhiyong & Zheng, Xu & Yang, Wenying, 2017. "Characteristics and effect factors of pressure oscillation in multi-injection DI diesel engine at high-load conditions," Applied Energy, Elsevier, vol. 195(C), pages 52-66.
    17. Xu, Leilei & Treacy, Mark & Zhang, Yan & Aziz, Amir & Tuner, Martin & Bai, Xue-Song, 2022. "Comparison of efficiency and emission characteristics in a direct-injection compression ignition engine fuelled with iso-octane and methanol under low temperature combustion conditions," Applied Energy, Elsevier, vol. 312(C).
    18. Nageswara Rao Gangolu & Bala Rama Krishna Chunchu & Abshalomu Yallamati & Radha Krishna Gopidesi, 2022. "Assessment of diesel engine characteristics by using soybean oil as a biofuel," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(6), pages 7579-7592, June.
    19. Giorgio Zamboni & Simone Moggia & Massimo Capobianco, 2017. "Effects of a Dual-Loop Exhaust Gas Recirculation System and Variable Nozzle Turbine Control on the Operating Parameters of an Automotive Diesel Engine," Energies, MDPI, vol. 10(1), pages 1-18, January.
    20. Jiwon Park & Jungkeun Cho & Heewon Choi & Jungsoo Park, 2020. "Prediction of Reformed Gas Composition for Diesel Engines with a Reformed EGR System Using an Artificial Neural Network," Energies, MDPI, vol. 13(22), pages 1-17, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2023:i:1:p:187-:d:1309789. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.