IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2023i1p14-d1303327.html
   My bibliography  Save this article

Studies on the Thermochemical Conversion of Waste Tyre Rubber—A Review

Author

Listed:
  • Piotr Soprych

    (AGH University of Krakow, Faculty of Energy and Fuels, al. Mickiewicza 30, 30-059 Krakow, Poland)

  • Grzegorz Czerski

    (AGH University of Krakow, Faculty of Energy and Fuels, al. Mickiewicza 30, 30-059 Krakow, Poland)

  • Przemysław Grzywacz

    (AGH University of Krakow, Faculty of Energy and Fuels, al. Mickiewicza 30, 30-059 Krakow, Poland)

Abstract

Waste from scrap tyres, due to its high volume (17 million Mg per year) and durability resulting from the physical and chemical properties, requires innovative approaches for efficient and environmentally friendly management. In many countries, the landfilling of waste tyres is banned (e.g., EU, USA, UK); however, waste tyres can be a source of valuable materials such as carbon black, pyrolysis oil, hydrogen-rich syngas, tyre char, as well as energy. The purpose of this article is to provide a synthesis of the state of knowledge regarding the thermal conversion of waste tyres by pyrolysis and gasification, taking into account the use of different measurement techniques and reactor types. These technologies are forward-looking and have a high degree of flexibility in terms of product sourcing, depending on the process conditions. The properties of waste from used tyres were analysed, i.e., the composition of the content of individual components and the main chemical substances. The results encompassed ultimate and proximate analyses of rubber from tyres, as well as the physical and chemical parameters of the tyre char obtained through pyrolysis. This article compiles available literature data regarding the impact of process and raw material parameters, such as temperature and time conditions, pressure, particle size, and catalyst addition on the pyrolysis and gasification processes. It also explores the influence of these factors on the yield and properties of the products, including pyrolysis oil, gas, synthesis gas, and tyre char.

Suggested Citation

  • Piotr Soprych & Grzegorz Czerski & Przemysław Grzywacz, 2023. "Studies on the Thermochemical Conversion of Waste Tyre Rubber—A Review," Energies, MDPI, vol. 17(1), pages 1-39, December.
  • Handle: RePEc:gam:jeners:v:17:y:2023:i:1:p:14-:d:1303327
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/1/14/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/1/14/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Grzegorz Czerski & Katarzyna Śpiewak & Dorota Makowska & Barbora Grycova, 2023. "Study on Steam Co-Gasification of Waste Tire Char and Sewage Sludge," Energies, MDPI, vol. 16(5), pages 1-15, February.
    2. Ramez Abdallah & Adel Juaidi & Mahmoud Assad & Tareq Salameh & Francisco Manzano-Agugliaro, 2020. "Energy Recovery from Waste Tires Using Pyrolysis: Palestine as Case of Study," Energies, MDPI, vol. 13(7), pages 1-13, April.
    3. Li, Dan & Lei, Shijun & Lin, Fawei & Zhong, Lei & Ma, Wenchao & Chen, Guanyi, 2020. "Study of scrap tires pyrolysis – Products distribution and mechanism," Energy, Elsevier, vol. 213(C).
    4. Serrano, Daniel & Horvat, Alen & Batuecas, Esperanza & Abelha, Pedro, 2022. "Waste tyres valorisation through gasification in a bubbling fluidised bed: An exhaustive gas composition analysis," Renewable Energy, Elsevier, vol. 200(C), pages 1438-1446.
    5. Al-Rahbi, Amal S. & Williams, Paul T., 2017. "Hydrogen-rich syngas production and tar removal from biomass gasification using sacrificial tyre pyrolysis char," Applied Energy, Elsevier, vol. 190(C), pages 501-509.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. AlNouss, Ahmed & McKay, Gordon & Al-Ansari, Tareq, 2020. "Enhancing waste to hydrogen production through biomass feedstock blending: A techno-economic-environmental evaluation," Applied Energy, Elsevier, vol. 266(C).
    2. Du, Shilin & Shu, Rui & Guo, Feiqiang & Mao, Songbo & Bai, Jiaming & Qian, Lin & Xin, Chengyun, 2022. "Porous coal char-based catalyst from coal gangue and lignite with high metal contents in the catalytic cracking of biomass tar," Energy, Elsevier, vol. 249(C).
    3. Sameh Monna & Adel Juaidi & Ramez Abdallah & Aiman Albatayneh & Patrick Dutournie & Mejdi Jeguirim, 2021. "Towards Sustainable Energy Retrofitting, a Simulation for Potential Energy Use Reduction in Residential Buildings in Palestine," Energies, MDPI, vol. 14(13), pages 1-13, June.
    4. Lu, Qiuxiang & zhang, Luqi & Chen, Xin & Li, Kuo & Meng, Lingshuai & Xie, Xiaoguang & Yuan, Shenfu & Gao, Yuchen & Zhou, Xinran, 2022. "Synergistic effect of volatile inherent minerals on catalytic pyrolysis of wheat straw over a Fe–Ca–Ni catalyst," Energy, Elsevier, vol. 253(C).
    5. Policella, Matteo & Wang, Zhiwei & Burra, Kiran. G. & Gupta, Ashwani K., 2019. "Characteristics of syngas from pyrolysis and CO2-assisted gasification of waste tires," Applied Energy, Elsevier, vol. 254(C).
    6. Buentello-Montoya, D.A. & Zhang, X. & Li, J., 2019. "The use of gasification solid products as catalysts for tar reforming," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 399-412.
    7. Hisham Afash & Bertug Ozarisoy & Hasim Altan & Cenk Budayan, 2023. "Recycling of Tire Waste Using Pyrolysis: An Environmental Perspective," Sustainability, MDPI, vol. 15(19), pages 1-21, September.
    8. Kim, Jung-Hun & Oh, Jeong-Ik & Tsang, Yiu Fai & Park, Young-Kwon & Lee, Jechan & Kwon, Eilhann E., 2020. "CO2-assisted catalytic pyrolysis of digestate with steel slag," Energy, Elsevier, vol. 191(C).
    9. Bartela, Łukasz & Kotowicz, Janusz & Dubiel-Jurgaś, Klaudia, 2018. "Investment risk for biomass integrated gasification combined heat and power unit with an internal combustion engine and a Stirling engine," Energy, Elsevier, vol. 150(C), pages 601-616.
    10. Ramez Abdallah & Adel Juaidi & Salameh Abdel-Fattah & Mahmoud Qadi & Montaser Shadid & Aiman Albatayneh & Hüseyin Çamur & Amos García-Cruz & Francisco Manzano-Agugliaro, 2022. "The Effects of Soiling and Frequency of Optimal Cleaning of PV Panels in Palestine," Energies, MDPI, vol. 15(12), pages 1-18, June.
    11. Hervy, Maxime & Weiss-Hortala, Elsa & Pham Minh, Doan & Dib, Hadi & Villot, Audrey & Gérente, Claire & Berhanu, Sarah & Chesnaud, Anthony & Thorel, Alain & Le Coq, Laurence & Nzihou, Ange, 2019. "Reactivity and deactivation mechanisms of pyrolysis chars from bio-waste during catalytic cracking of tar," Applied Energy, Elsevier, vol. 237(C), pages 487-499.
    12. Toledo, Mario & Arriagada, Andrés & Ripoll, Nicolás & Salgansky, Eugene A. & Mujeebu, Muhammad Abdul, 2023. "Hydrogen and syngas production by hybrid filtration combustion: Progress and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 177(C).
    13. Zhang, Ziyin & Pang, Shusheng, 2019. "Experimental investigation of tar formation and producer gas composition in biomass steam gasification in a 100 kW dual fluidised bed gasifier," Renewable Energy, Elsevier, vol. 132(C), pages 416-424.
    14. Alberto-Jesus Perea-Moreno & Francisco Manzano-Agugliaro, 2020. "Energy Saving at Cities," Energies, MDPI, vol. 13(15), pages 1-3, July.
    15. Panagiotis Grammelis & Nikolaos Margaritis & Petros Dallas & Dimitrios Rakopoulos & Georgios Mavrias, 2021. "A Review on Management of End of Life Tires (ELTs) and Alternative Uses of Textile Fibers," Energies, MDPI, vol. 14(3), pages 1-20, January.
    16. Inayat, Abrar & Raza, Mohsin, 2019. "District cooling system via renewable energy sources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 360-373.
    17. Anastasia Zabaniotou & Ioannis Vaskalis, 2023. "Economic Assessment of Polypropylene Waste (PP) Pyrolysis in Circular Economy and Industrial Symbiosis," Energies, MDPI, vol. 16(2), pages 1-26, January.
    18. Yuan, XiangZhou & Fan, ShuMin & Choi, Seung Wan & Kim, Hyung-Taek & Lee, Ki Bong, 2017. "Potassium catalyst recovery process and performance evaluation of the recovered catalyst in the K2CO3-catalyzed steam gasification system," Applied Energy, Elsevier, vol. 195(C), pages 850-860.
    19. Usmani, Sameer & Gonzalez Quiroga, Arturo & Vasquez Padilla, Ricardo & Palmer, Graeme & Lake, Maree, 2020. "Simulation model of the characteristics of syngas from hardwood biomass for thermally integrated gasification using unisim design tool," Energy, Elsevier, vol. 211(C).
    20. Yang, Fan & Zhong, Jie & Liu, Xiaohui & Zhu, Xuedong, 2018. "A novel catalytic alkylation process of syngas with benzene over the cerium modified platinum supported on HZSM-5 zeolite," Applied Energy, Elsevier, vol. 226(C), pages 22-30.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2023:i:1:p:14-:d:1303327. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.