IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2023i1p1-d1302778.html
   My bibliography  Save this article

From Academia to Industry: Criteria for Upscaling Ionic Liquid-Based Thermo-Electrochemical Cells for Large-Scale Applications

Author

Listed:
  • Arianna Tiozzo

    (South Europe—Sustainable Raw Materials, Centro Ricerche FIAT S.C.p.A., Strada Torino 50, 10043 Orbassano, Italy
    Department of Chemistry, University of Turin, Via Pietro Giuria 7, 10125 Torino, Italy)

  • Andrea Bertinetti

    (Gemmate Technologies srl, Via Reano 31, 10090 Buttigliera Alta, Italy)

  • Alessio Tommasi

    (Gemmate Technologies srl, Via Reano 31, 10090 Buttigliera Alta, Italy)

  • Giovanna Nicol

    (South Europe—Sustainable Raw Materials, Centro Ricerche FIAT S.C.p.A., Strada Torino 50, 10043 Orbassano, Italy)

  • Riccardo Rocca

    (South Europe—Sustainable Raw Materials, Centro Ricerche FIAT S.C.p.A., Strada Torino 50, 10043 Orbassano, Italy)

  • Sawako Nakamae

    (Service de Physique de L’état Condensé, SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif sur Yvette, France)

  • Blanca E. Torres Bautista

    (Service de Physique de L’état Condensé, SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif sur Yvette, France)

  • Sabrina Campagna Zignani

    (Institute of Advanced Energy Technologies (ITAE), Italian National Research Council (CNR), Via Salita S. Lucia Sopra Contesse 5, 98126 Messina, Italy)

  • Edith Laux

    (Haute Ecole Arc Ingénierie (HES-SO), Eplatures-Grise 17, 2300 La Chaux-de-Fonds, Switzerland)

  • Sebastien Fantini

    (Solvionic, 11 Chemin des Silos, 31100 Toulouse, France)

  • Mauro Francesco Sgroi

    (Department of Chemistry, University of Turin, Via Pietro Giuria 7, 10125 Torino, Italy
    Institute of Advanced Energy Technologies (ITAE), Italian National Research Council (CNR), Via Salita S. Lucia Sopra Contesse 5, 98126 Messina, Italy)

Abstract

Thermo-electrochemical cells (or thermocells) represent a promising technology to convert waste heat energy into electrical energy, generating power with minimal material consumption and a limited carbon footprint. Recently, the adoption of ionic liquids has pushed both the operational temperature range and the power output of thermocells. This research discusses the design challenges and the key performance limitations that need to be addressed to deploy the thermocells in real-world applications. For this purpose, a unique up-scaled design of a thermocell is proposed, in which the materials are selected according to the techno-economic standpoint. Specifically, the electrolyte is composed of EMI-TFSI ionic liquid supplemented by [Co(ppy)] 3+/2+ redox couples characterized by a positive Seebeck coefficient (1.5 mV/K), while the electrodes consist of carbon-based materials characterized by a high surface area. Such electrodes, adopted to increase the rate of the electrode reactions, lead to a thermoelectric performance one order of magnitude greater than the Pt electrode-based counterpart. However, the practical applications of thermocells are still limited by the low power density and low voltage that can be generated.

Suggested Citation

  • Arianna Tiozzo & Andrea Bertinetti & Alessio Tommasi & Giovanna Nicol & Riccardo Rocca & Sawako Nakamae & Blanca E. Torres Bautista & Sabrina Campagna Zignani & Edith Laux & Sebastien Fantini & Mauro , 2023. "From Academia to Industry: Criteria for Upscaling Ionic Liquid-Based Thermo-Electrochemical Cells for Large-Scale Applications," Energies, MDPI, vol. 17(1), pages 1-12, December.
  • Handle: RePEc:gam:jeners:v:17:y:2023:i:1:p:1-:d:1302778
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/1/1/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/1/1/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dan Dan & Yihang Zhao & Mingshan Wei & Xuehui Wang, 2023. "Review of Thermal Management Technology for Electric Vehicles," Energies, MDPI, vol. 16(12), pages 1-38, June.
    2. Huang, Pei & Copertaro, Benedetta & Zhang, Xingxing & Shen, Jingchun & Löfgren, Isabelle & Rönnelid, Mats & Fahlen, Jan & Andersson, Dan & Svanfeldt, Mikael, 2020. "A review of data centers as prosumers in district energy systems: Renewable energy integration and waste heat reuse for district heating," Applied Energy, Elsevier, vol. 258(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Haoran & Hou, Juan & Hong, Tianzhen & Nord, Natasa, 2022. "Distinguish between the economic optimal and lowest distribution temperatures for heat-prosumer-based district heating systems with short-term thermal energy storage," Energy, Elsevier, vol. 248(C).
    2. Wang, Fengjuan & Lv, Chengwei & Xu, Jiuping, 2023. "Carbon awareness oriented data center location and configuration: An integrated optimization method," Energy, Elsevier, vol. 278(C).
    3. Pauli Hiltunen & Sanna Syri, 2020. "Highly Renewable District Heat for Espoo Utilizing Waste Heat Sources," Energies, MDPI, vol. 13(14), pages 1-21, July.
    4. Han, Ouzhu & Ding, Tao & Zhang, Xiaosheng & Mu, Chenggang & He, Xinran & Zhang, Hongji & Jia, Wenhao & Ma, Zhoujun, 2023. "A shared energy storage business model for data center clusters considering renewable energy uncertainties," Renewable Energy, Elsevier, vol. 202(C), pages 1273-1290.
    5. Hiltunen, Pauli & Syri, Sanna, 2021. "Low-temperature waste heat enabling abandoning coal in Espoo district heating system," Energy, Elsevier, vol. 231(C).
    6. Peter L. Borland & Kevin McDonnell & Mary Harty, 2023. "Assessment of the Potential to Use the Expelled Heat Energy from a Typical Data Centre in Ireland for Alternative Farming Methods," Energies, MDPI, vol. 16(18), pages 1-32, September.
    7. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    8. Jerez Monsalves, Juan & Bergaentzlé, Claire & Keles, Dogan, 2023. "Impacts of flexible-cooling and waste-heat recovery from data centres on energy systems: A Danish case study," Energy, Elsevier, vol. 281(C).
    9. Nord, Natasa & Shakerin, Mohammad & Tereshchenko, Tymofii & Verda, Vittorio & Borchiellini, Romano, 2021. "Data informed physical models for district heating grids with distributed heat sources to understand thermal and hydraulic aspects," Energy, Elsevier, vol. 222(C).
    10. Weijian Ding & Behzad Ebrahimi & Byoung-Do Kim & Connie L. Devenport & Amy E. Childress, 2024. "Analysis of Anthropogenic Waste Heat Emission from an Academic Data Center," Energies, MDPI, vol. 17(8), pages 1-20, April.
    11. Meng Li & Siyu Zheng & Mingshan Wei, 2023. "Flow Loss Analysis and Structural Optimization of Multiway Valves for Integrated Thermal Management Systems in Electric Vehicles," Energies, MDPI, vol. 16(13), pages 1-22, June.
    12. Ieva Pakere & Kirils Goncarovs & Armands Grāvelsiņš & Marita Agate Zirne, 2024. "Dynamic Modelling of Data Center Waste Heat Potential Integration in District Heating in Latvia," Energies, MDPI, vol. 17(2), pages 1-13, January.
    13. Mengting Jiang & Camilo Rindt & David M. J. Smeulders, 2022. "Optimal Planning of Future District Heating Systems—A Review," Energies, MDPI, vol. 15(19), pages 1-38, September.
    14. Wadim Strielkowski & Andrey Vlasov & Kirill Selivanov & Konstantin Muraviev & Vadim Shakhnov, 2023. "Prospects and Challenges of the Machine Learning and Data-Driven Methods for the Predictive Analysis of Power Systems: A Review," Energies, MDPI, vol. 16(10), pages 1-31, May.
    15. Yuan, Xiaolei & Liang, Yumin & Hu, Xinyi & Xu, Yizhe & Chen, Yongbao & Kosonen, Risto, 2023. "Waste heat recoveries in data centers: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    16. Li, Weiwei & Qian, Tong & Zhang, Yin & Shen, Yueqing & Wu, Chenghu & Tang, Wenhu, 2023. "Distributionally robust chance-constrained planning for regional integrated electricity–heat systems with data centers considering wind power uncertainty," Applied Energy, Elsevier, vol. 336(C).
    17. Kristina Lygnerud & Sarka Langer, 2022. "Urban Sustainability: Recovering and Utilizing Urban Excess Heat," Energies, MDPI, vol. 15(24), pages 1-11, December.
    18. Pipiciello, Mauro & Caldera, Matteo & Cozzini, Marco & Ancona, Maria A. & Melino, Francesco & Di Pietra, Biagio, 2021. "Experimental characterization of a prototype of bidirectional substation for district heating with thermal prosumers," Energy, Elsevier, vol. 223(C).
    19. Li, Jian & Jurasz, Jakub & Li, Hailong & Tao, Wen-Quan & Duan, Yuanyuan & Yan, Jinyue, 2020. "A new indicator for a fair comparison on the energy performance of data centers," Applied Energy, Elsevier, vol. 276(C).
    20. Fan, Chengliang & Hinkelman, Kathryn & Fu, Yangyang & Zuo, Wangda & Huang, Sen & Shi, Chengnan & Mamaghani, Nasim & Faulkner, Cary & Zhou, Xiaoqing, 2021. "Open-source Modelica models for the control performance simulation of chiller plants with water-side economizer," Applied Energy, Elsevier, vol. 299(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2023:i:1:p:1-:d:1302778. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.