IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i9p3723-d1133823.html
   My bibliography  Save this article

Investigation of Transcritical Carbon Dioxide Power Generation System Based on Vortex Tube

Author

Listed:
  • Huang Rui

    (State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi’an University of Technology, Xi’an 710048, China)

  • Zhou Kang

    (State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi’an University of Technology, Xi’an 710048, China)

  • Pengcheng Guo

    (State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi’an University of Technology, Xi’an 710048, China)

  • Ma Wei

    (State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi’an University of Technology, Xi’an 710048, China)

Abstract

In this paper, a transcritical carbon dioxide power generation system based on a vortex tube is studied, which has the advantage of the self-condensation of carbon dioxide. The thermodynamic performance of the system was investigated by establishing a mathematical model. The results showed that under fundamental working conditions, the system could output a net power of 271.72 kW, and the thermal efficiency as well as the exergy efficiency of the system could reach 7.38% and 27.09%, respectively. Exergy analysis showed that the turbine had the greatest exergy loss among the system’s components, followed by the vortex tube, pump, heater and cooler. Parameter analysis showed that increasing the outlet pressure and inlet temperature of the vortex tube can improve the thermal efficiency and exergy efficiency of the system. In addition, the improvement in the turbine component’s efficiency is the most beneficial to the system’s performance, among which the turbine’s efficiency has the greatest impact. Carbon dioxide can be effectively liquified by expanding it in the vortex tube, and its liquefaction ratio increases with the decrease in the vortex tube’s inlet temperature and the increase in the vortex tube’s inlet pressure.

Suggested Citation

  • Huang Rui & Zhou Kang & Pengcheng Guo & Ma Wei, 2023. "Investigation of Transcritical Carbon Dioxide Power Generation System Based on Vortex Tube," Energies, MDPI, vol. 16(9), pages 1-18, April.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3723-:d:1133823
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/9/3723/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/9/3723/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dai, Baomin & Li, Minxia & Ma, Yitai, 2014. "Thermodynamic analysis of carbon dioxide blends with low GWP (global warming potential) working fluids-based transcritical Rankine cycles for low-grade heat energy recovery," Energy, Elsevier, vol. 64(C), pages 942-952.
    2. Pan, Lisheng & Li, Bing & Shi, Weixiu & Wei, Xiaolin, 2019. "Optimization of the self-condensing CO2 transcritical power cycle using solar thermal energy," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    3. Kim, Y.M. & Kim, C.G. & Favrat, D., 2012. "Transcritical or supercritical CO2 cycles using both low- and high-temperature heat sources," Energy, Elsevier, vol. 43(1), pages 402-415.
    4. Oberti, Raphaël & Lagrandeur, Junior & Poncet, Sébastien, 2023. "Numerical benchmark of a Ranque–Hilsch vortex tube working with subcritical carbon dioxide," Energy, Elsevier, vol. 263(PC).
    5. Pan, Lisheng & Li, Bo & Wei, Xiaolin & Li, Teng, 2016. "Experimental investigation on the CO2 transcritical power cycle," Energy, Elsevier, vol. 95(C), pages 247-254.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Aofang & Xing, Lingli & Su, Wen & Liu, Pei, 2023. "State-of-the-art review on the CO2 combined power and cooling system: System configuration, modeling and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    2. Lisheng Pan & Huaixin Wang, 2019. "Experimental Investigation on Performance of an Organic Rankine Cycle System Integrated with a Radial Flow Turbine," Energies, MDPI, vol. 12(4), pages 1-20, February.
    3. Sarkar, Jahar, 2015. "Review and future trends of supercritical CO2 Rankine cycle for low-grade heat conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 434-451.
    4. Mondal, Subha & De, Sudipta, 2015. "CO2 based power cycle with multi-stage compression and intercooling for low temperature waste heat recovery," Energy, Elsevier, vol. 90(P1), pages 1132-1143.
    5. Mondal, Subha & De, Sudipta, 2015. "Transcritical CO2 power cycle – Effects of regenerative heating using turbine bleed gas at intermediate pressure," Energy, Elsevier, vol. 87(C), pages 95-103.
    6. S. Mohammad S. Mahmoudi & Ata D. Akbari & Marc A. Rosen, 2016. "Thermoeconomic Analysis and Optimization of a New Combined Supercritical Carbon Dioxide Recompression Brayton/Kalina Cycle," Sustainability, MDPI, vol. 8(10), pages 1-19, October.
    7. Pan, Lisheng & Shi, Weixiu & Wei, Xiaolin & Li, Teng & Li, Bo, 2020. "Experimental verification of the self-condensing CO2 transcritical power cycle," Energy, Elsevier, vol. 198(C).
    8. Mondal, Subha & De, Sudipta, 2017. "Power by waste heat recovery from low temperature industrial flue gas by Organic Flash Cycle (OFC) and transcritical-CO2 power cycle: A comparative study through combined thermodynamic and economic an," Energy, Elsevier, vol. 121(C), pages 832-840.
    9. Dadpour, Daryoush & Gholizadeh, Mohammad & Estiri, Mohammad & Poncet, Sébastien, 2023. "Multi objective optimization and 3E analyses of a novel supercritical/transcritical CO2 waste heat recovery from a ship exhaust," Energy, Elsevier, vol. 278(C).
    10. Pan, Lisheng & Li, Bing & Shi, Weixiu & Wei, Xiaolin, 2019. "Optimization of the self-condensing CO2 transcritical power cycle using solar thermal energy," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    11. Lingfeng Shi & Gequn Shu & Hua Tian & Guangdai Huang & Liwen Chang & Tianyu Chen & Xiaoya Li, 2017. "Ideal Point Design and Operation of CO 2 -Based Transcritical Rankine Cycle (CTRC) System Based on High Utilization of Engine’s Waste Heats," Energies, MDPI, vol. 10(11), pages 1-21, October.
    12. Liang, Ying & Cai, Lei & Guan, Yanwen & Liu, Wenbin & Xiang, Yanlei & Li, Juan & He, Tianzhi, 2020. "Numerical study on an original oxy-fuel combustion power plant with efficient utilization of flue gas waste heat," Energy, Elsevier, vol. 193(C).
    13. Siddiqui, Muhammad Ehtisham & Almatrafi, Eydhah & Bamasag, Ahmad & Saeed, Usman, 2022. "Adoption of CO2-based binary mixture to operate transcritical Rankine cycle in warm regions," Renewable Energy, Elsevier, vol. 199(C), pages 1372-1380.
    14. Amini, Ali & Mirkhani, Nima & Pakjesm Pourfard, Pedram & Ashjaee, Mehdi & Khodkar, Mohammad Amin, 2015. "Thermo-economic optimization of low-grade waste heat recovery in Yazd combined-cycle power plant (Iran) by a CO2 transcritical Rankine cycle," Energy, Elsevier, vol. 86(C), pages 74-84.
    15. Li, Chengyu & Wang, Huaixin, 2016. "Power cycles for waste heat recovery from medium to high temperature flue gas sources – from a view of thermodynamic optimization," Applied Energy, Elsevier, vol. 180(C), pages 707-721.
    16. S. Hamed Fatemi Alavi & Amirreza Javaherian & S. M. S. Mahmoudi & Saeed Soltani & Marc A. Rosen, 2023. "Coupling a Gas Turbine Bottoming Cycle Using CO 2 as the Working Fluid with a Gas Cycle: Exergy Analysis Considering Combustion Chamber Steam Injection," Clean Technol., MDPI, vol. 5(3), pages 1-25, September.
    17. Duniam, Sam & Veeraragavan, Ananthanarayanan, 2019. "Off-design performance of the supercritical carbon dioxide recompression Brayton cycle with NDDCT cooling for concentrating solar power," Energy, Elsevier, vol. 187(C).
    18. Dai, Baomin & Liu, Shengchun & Li, Hailong & Sun, Zhili & Song, Mengjie & Yang, Qianru & Ma, Yitai, 2018. "Energetic performance of transcritical CO2 refrigeration cycles with mechanical subcooling using zeotropic mixture as refrigerant," Energy, Elsevier, vol. 150(C), pages 205-221.
    19. Shu, Gequn & Shi, Lingfeng & Tian, Hua & Deng, Shuai & Li, Xiaoya & Chang, Liwen, 2017. "Configurations selection maps of CO2-based transcritical Rankine cycle (CTRC) for thermal energy management of engine waste heat," Applied Energy, Elsevier, vol. 186(P3), pages 423-435.
    20. Kun-Hsien Lu & Hsiao-Wei D. Chiang & Pei-Jen Wang, 2022. "Sensitivity Analysis of Transcritical CO 2 Cycle Performance Regarding Isentropic Efficiencies of Turbomachinery for Low Temperature Heat Sources," Energies, MDPI, vol. 15(23), pages 1-18, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3723-:d:1133823. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.