IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i6p2803-d1100449.html
   My bibliography  Save this article

Direct Numerical Simulations of Turbulent Flow over Low-Pressure Turbine Blades with Aeroelastic Vibrations and Inflow Wakes

Author

Listed:
  • Mahdi Erfanian Nakhchi

    (Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK)

  • Shine Win Naung

    (Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK)

  • Mohammad Rahmati

    (Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK)

Abstract

In the present work, direct numerical simulation is employed to investigate the unsteady flow characteristics and energy performance of low-pressure turbines (LPT) by considering the blades aeroelastic vibrations and inflow wakes. The effects of inflow disturbance (0 < φ < 0.91) and reduced blade vibration (0 < f < 250 Hz) on the turbulent flow behavior of LPTs are investigated for the first time. The transient governing equations on the vibrating blades are modelled by the high-order spectral/hp element method. The results revealed that by increasing the inflow disturbances, the separated bubbles tend to shrink, which has a noticeable influence on the pressure in the downstream region. The maximum wake loss value is reduced by 16.4% by increasing the φ from 0.31 to 0.91. The flow separation is majorly affected by inflow wakes and blade vibrations. The results revealed that the maximum pressure coefficient in the separated flow region of the vibrating blade has been increased by 108% by raising φ from 0 to 0.91. The blade vibration further intensifies the vortex generation process, adding more energy to the flow and the downstream vortex shedding. The vortex generation and shedding are intensified on the vibrating blade compared to the non-vibrating one that is subject to inflow wakes. The results and findings from this paper are also useful for the design and modeling of turbine blades that are prone to aeroelastic instabilities, such as large offshore wind turbine blades.

Suggested Citation

  • Mahdi Erfanian Nakhchi & Shine Win Naung & Mohammad Rahmati, 2023. "Direct Numerical Simulations of Turbulent Flow over Low-Pressure Turbine Blades with Aeroelastic Vibrations and Inflow Wakes," Energies, MDPI, vol. 16(6), pages 1-21, March.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:6:p:2803-:d:1100449
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/6/2803/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/6/2803/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gilberto Santo & Mathijs Peeters & Wim Van Paepegem & Joris Degroote, 2020. "Fluid–Structure Interaction Simulations of a Wind Gust Impacting on the Blades of a Large Horizontal Axis Wind Turbine," Energies, MDPI, vol. 13(3), pages 1-20, January.
    2. Moriguchi, Shota & Miyazawa, Hironori & Furusawa, Takashi & Yamamoto, Satoru, 2021. "Large eddy simulation of a linear turbine cascade with a trailing edge cutback," Energy, Elsevier, vol. 220(C).
    3. Nakhchi, M.E. & Naung, S. Win & Rahmati, M., 2022. "Influence of blade vibrations on aerodynamic performance of axial compressor in gas turbine: Direct numerical simulation," Energy, Elsevier, vol. 242(C).
    4. Han, Wanlong & Zhang, Yifan & Li, Hongzhi & Yao, Mingyu & Wang, Yueming & Feng, Zhenping & Zhou, Dong & Dan, Guangju, 2019. "Aerodynamic design of the high pressure and low pressure axial turbines for the improved coal-fired recompression SCO2 reheated Brayton cycle," Energy, Elsevier, vol. 179(C), pages 442-453.
    5. Nakhchi, M.E. & Naung, S. Win & Rahmati, M., 2021. "High-resolution direct numerical simulations of flow structure and aerodynamic performance of wind turbine airfoil at wide range of Reynolds numbers," Energy, Elsevier, vol. 225(C).
    6. Niels Pynaert & Thomas Haas & Jolan Wauters & Guillaume Crevecoeur & Joris Degroote, 2023. "Wing Deformation of an Airborne Wind Energy System in Crosswind Flight Using High-Fidelity Fluid–Structure Interaction," Energies, MDPI, vol. 16(2), pages 1-16, January.
    7. Ali Awada & Rafic Younes & Adrian Ilinca, 2021. "Review of Vibration Control Methods for Wind Turbines," Energies, MDPI, vol. 14(11), pages 1-35, May.
    8. M. Salman Siddiqui & Eivind Fonn & Trond Kvamsdal & Adil Rasheed, 2019. "Finite-Volume High-Fidelity Simulation Combined with Finite-Element-Based Reduced-Order Modeling of Incompressible Flow Problems," Energies, MDPI, vol. 12(7), pages 1-23, April.
    9. Wang, Xiaojing & Zou, Zhengping, 2019. "Uncertainty analysis of impact of geometric variations on turbine blade performance," Energy, Elsevier, vol. 176(C), pages 67-80.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nakhchi, M.E. & Naung, S. Win & Rahmati, M., 2022. "Influence of blade vibrations on aerodynamic performance of axial compressor in gas turbine: Direct numerical simulation," Energy, Elsevier, vol. 242(C).
    2. Wang, Qi & Yang, Li & Rao, Yu, 2021. "Establishment of a generalizable model on a small-scale dataset to predict the surface pressure distribution of gas turbine blades," Energy, Elsevier, vol. 214(C).
    3. Li, Jinxing & Liu, Tianyuan & Wang, Yuqi & Xie, Yonghui, 2022. "Integrated graph deep learning framework for flow field reconstruction and performance prediction of turbomachinery," Energy, Elsevier, vol. 254(PC).
    4. Nakhchi, M.E. & Naung, S. Win & Dala, L. & Rahmati, M., 2022. "Direct numerical simulations of aerodynamic performance of wind turbine aerofoil by considering the blades active vibrations," Renewable Energy, Elsevier, vol. 191(C), pages 669-684.
    5. Giovanni Ferrara & Alessandro Bianchini, 2021. "Special Issue “Numerical Simulation of Wind Turbines”," Energies, MDPI, vol. 14(6), pages 1-2, March.
    6. Galih Bangga, 2022. "Progress and Outlook in Wind Energy Research," Energies, MDPI, vol. 15(18), pages 1-5, September.
    7. Hu, Pengfei & Meng, Qingqiang & Fan, Tiantian & Cao, Lihua & Li, Qi, 2023. "Dynamic response of turbine blade considering a droplet-wall interaction in wet steam region," Energy, Elsevier, vol. 265(C).
    8. Win Naung, Shine & Nakhchi, Mahdi Erfanian & Rahmati, Mohammad, 2021. "High-fidelity CFD simulations of two wind turbines in arrays using nonlinear frequency domain solution method," Renewable Energy, Elsevier, vol. 174(C), pages 984-1005.
    9. Wang, Yuqi & Du, Qiuwan & Li, Yunzhu & Zhang, Di & Xie, Yonghui, 2022. "Field reconstruction and off-design performance prediction of turbomachinery in energy systems based on deep learning techniques," Energy, Elsevier, vol. 238(PB).
    10. Mohamed Ali Kammoun & Sadok Turki & Nidhal Rezg, 2020. "Optimization of Flight Rescheduling Problem under Carbon Tax," Sustainability, MDPI, vol. 12(14), pages 1-19, July.
    11. Zhou, Kai & Zheng, Xinqian, 2022. "Novel wave-shaped tip-shroud contours towards reducing turbine leakage loss," Energy, Elsevier, vol. 254(PA).
    12. Li, Jinxing & Liu, Tianyuan & Zhu, Guangya & Li, Yunzhu & Xie, Yonghui, 2023. "Uncertainty quantification and aerodynamic robust optimization of turbomachinery based on graph learning methods," Energy, Elsevier, vol. 273(C).
    13. Claire E. Heaney & Andrew G. Buchan & Christopher C. Pain & Simon Jewer, 2021. "Reduced-Order Modelling Applied to the Multigroup Neutron Diffusion Equation Using a Nonlinear Interpolation Method for Control-Rod Movement," Energies, MDPI, vol. 14(5), pages 1-27, March.
    14. Jacek Kabziński & Przemysław Mosiołek, 2021. "Integrated, Multi-Approach, Adaptive Control of Two-Mass Drive with Nonlinear Damping and Stiffness," Energies, MDPI, vol. 14(17), pages 1-23, September.
    15. Jacek Kabziński & Przemysław Mosiołek, 2022. "Observer-Based, Robust Position Tracking in Two-Mass Drive System," Energies, MDPI, vol. 15(23), pages 1-28, November.
    16. Matilde Santos, 2022. "Special Issue on Dynamics and Control of Offshore and Onshore Wind Turbine Structures," Energies, MDPI, vol. 15(8), pages 1-3, April.
    17. Hongmei Cui & Zhongyang Li & Bingchuan Sun & Teng Fan & Yonghao Li & Lida Luo & Yong Zhang & Jian Wang, 2022. "A New Ice Quality Prediction Method of Wind Turbine Impeller Based on the Deep Neural Network," Energies, MDPI, vol. 15(22), pages 1-18, November.
    18. Siddiqui, M. Salman & Khalid, Muhammad Hamza & Zahoor, Rizwan & Butt, Fahad Sarfraz & Saeed, Muhammed & Badar, Abdul Waheed, 2021. "A numerical investigation to analyze effect of turbulence and ground clearance on the performance of a roof top vertical–axis wind turbine," Renewable Energy, Elsevier, vol. 164(C), pages 978-989.
    19. Pustina, L. & Serafini, J. & Pasquali, C. & Solero, L. & Lidozzi, A. & Gennaretti, M., 2023. "A novel resonant controller for sea-induced rotor blade vibratory loads reduction on floating offshore wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    20. Zhang, Yifan & Li, Hongzhi & Li, Kailun & Yang, Yu & Zhou, Yujia & Zhang, Xuwei & Xu, Ruina & Zhuge, Weilin & Lei, Xianliang & Dan, Guangju, 2022. "Dynamic characteristics and control strategies of the supercritical CO2 Brayton cycle tailored for the new generation concentrating solar power," Applied Energy, Elsevier, vol. 328(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:6:p:2803-:d:1100449. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.