IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i5p2422-d1086699.html
   My bibliography  Save this article

Prediction of Storage Conditions to Increase the Bioenergy Efficiency of Giant Miscanthus Pellets Produced through On-Site Integrated Pretreatment Machines

Author

Listed:
  • Jung-Kyu Lee

    (Department of Biosystems Engineering, Chungbuk National University, Cheongju 28644, Republic of Korea)

  • Dongho Hong

    (Sunbrand Industrial Inc., Jangseong 57248, Republic of Korea)

  • Hyunkyu Chae

    (Shinyoung E&P Co., Ltd., Cheongju 28135, Republic of Korea)

  • Dong-Hoon Lee

    (Department of Biosystems Engineering, Chungbuk National University, Cheongju 28644, Republic of Korea)

Abstract

Fossil fuels are associated with problems such as resource depletion and pollution, necessitating the exploration of alternatives. Giant miscanthus (Miscanthus × giganteus Greef et Deu), a perennial that can be harvested yearly, requires a low production energy input. It has less ash content and high heat efficiency and has attracted attention as an energy source. An on-site processing equipment, powered via a tractor and equipped with a chipper and a two-stage compression roller, was developed that can harvest 1000 kg of giant miscanthus per hour and simultaneously produce compressed pellets eliminating unnecessary processes such as transportation and processing. With its use, 33–74.5 kWh/t of electrical energy can be saved by producing pellets. The changes in moisture content between the produced compressed pellets and two samples of the ground product were measured immediately before compression for 24 h at relative humidity ranging from 65% to 80%. The moisture content was 6% initially; it ranged from 6.71% to 7.81% in compressed pellets, depending on the conditions, and from 7.44% to 9.82% in the ground sample immediately before compression, indicating the effect of the physical form of the biomass and humidity in the environment. The possible storage period (while maintaining the moisture content at 8–10% for optimal biofuel efficiency based on the measured data) was predicted. The optimal relative humidity of the storage environment for maintaining biomass quality for more than 6 months was predicted to be ≤77% and ≤70% for the compressed pellet and ground sample, respectively. Moreover, at a relative humidity ≥77%, giant miscanthus biomass, immediately before compression, had >10% moisture content in 2 days, warranting caution in storage.

Suggested Citation

  • Jung-Kyu Lee & Dongho Hong & Hyunkyu Chae & Dong-Hoon Lee, 2023. "Prediction of Storage Conditions to Increase the Bioenergy Efficiency of Giant Miscanthus Pellets Produced through On-Site Integrated Pretreatment Machines," Energies, MDPI, vol. 16(5), pages 1-14, March.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2422-:d:1086699
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/5/2422/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/5/2422/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hiroshi Koseki, 2011. "Evaluation of Various Solid Biomass Fuels Using Thermal Analysis and Gas Emission Tests," Energies, MDPI, vol. 4(4), pages 1-12, April.
    2. Peter Križan & Miloš Matú & Ľubomír Šooš & Juraj Beniak, 2015. "Behavior of Beech Sawdust during Densification into a Solid Biofuel," Energies, MDPI, vol. 8(7), pages 1-17, June.
    3. Piyarath Saosee & Boonrod Sajjakulnukit & Shabbir H. Gheewala, 2020. "Life Cycle Assessment of Wood Pellet Production in Thailand," Sustainability, MDPI, vol. 12(17), pages 1-23, August.
    4. Nunes, L.J.R. & Matias, J.C.O. & Catalão, J.P.S., 2014. "Mixed biomass pellets for thermal energy production: A review of combustion models," Applied Energy, Elsevier, vol. 127(C), pages 135-140.
    5. Jonsson, Ragnar & Rinaldi, Francesca, 2017. "The impact on global wood-product markets of increasing consumption of wood pellets within the European Union," Energy, Elsevier, vol. 133(C), pages 864-878.
    6. Takahiro Yoshida & Katsushi Kuroda & Daisuke Kamikawa & Yoshitaka Kubojima & Takashi Nomura & Hiroki Watada & Tetsuya Sano & Seiji Ohara, 2021. "Water Resistance of Torrefied Wood Pellets Prepared by Different Methods," Energies, MDPI, vol. 14(6), pages 1-10, March.
    7. Marta Jach-Nocoń & Grzegorz Pełka & Wojciech Luboń & Tomasz Mirowski & Adam Nocoń & Przemysław Pachytel, 2021. "An Assessment of the Efficiency and Emissions of a Pellet Boiler Combusting Multiple Pellet Types," Energies, MDPI, vol. 14(15), pages 1-15, July.
    8. Hu, Qiang & Shao, Jingai & Yang, Haiping & Yao, Dingding & Wang, Xianhua & Chen, Hanping, 2015. "Effects of binders on the properties of bio-char pellets," Applied Energy, Elsevier, vol. 157(C), pages 508-516.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mostafa, Mohamed E. & Hu, Song & Wang, Yi & Su, Sheng & Hu, Xun & Elsayed, Saad A. & Xiang, Jun, 2019. "The significance of pelletization operating conditions: An analysis of physical and mechanical characteristics as well as energy consumption of biomass pellets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 332-348.
    2. Xuyang Cui & Junhong Yang & Xinyu Shi & Wanning Lei & Tao Huang & Chao Bai, 2019. "Experimental Investigation on the Energy Consumption, Physical, and Thermal Properties of a Novel Pellet Fuel Made from Wood Residues with Microalgae as a Binder," Energies, MDPI, vol. 12(18), pages 1-26, September.
    3. Saad A El-Sayed & Mohammed Khairy Elsaid Mohamed, 2018. "Mechanical properties and characteristics of wheat straw and pellets," Energy & Environment, , vol. 29(7), pages 1224-1246, November.
    4. Stolarski, Mariusz J. & Stachowicz, Paweł & Dudziec, Paweł, 2022. "Wood pellet quality depending on dendromass species," Renewable Energy, Elsevier, vol. 199(C), pages 498-508.
    5. Safa Arous & Ahmed Koubaa & Hassine Bouafif & Besma Bouslimi & Flavia Lega Braghiroli & Chedly Bradai, 2021. "Effect of Pyrolysis Temperature and Wood Species on the Properties of Biochar Pellets," Energies, MDPI, vol. 14(20), pages 1-15, October.
    6. Jakub Styks & Marek Wróbel & Jarosław Frączek & Adrian Knapczyk, 2020. "Effect of Compaction Pressure and Moisture Content on Quality Parameters of Perennial Biomass Pellets," Energies, MDPI, vol. 13(8), pages 1-20, April.
    7. Lasek, Janusz A. & Matuszek, Katarzyna & Hrycko, Piotr & Głód, Krzysztof & Li, Yueh-Heng, 2023. "The combustion of torrefied biomass in commercial-scale domestic boilers," Renewable Energy, Elsevier, vol. 216(C).
    8. Alessandra Fusi & Jacopo Bacenetti & Andrea R. Proto & Doriana E. A. Tedesco & Domenico Pessina & Davide Facchinetti, 2020. "Pellet Production from Miscanthus: Energy and Environmental Assessment," Energies, MDPI, vol. 14(1), pages 1-14, December.
    9. Rodolfo Picchio & Francesco Latterini & Rachele Venanzi & Walter Stefanoni & Alessandro Suardi & Damiano Tocci & Luigi Pari, 2020. "Pellet Production from Woody and Non-Woody Feedstocks: A Review on Biomass Quality Evaluation," Energies, MDPI, vol. 13(11), pages 1-20, June.
    10. Yang, Wei & Zhu, Youjian & Cheng, Wei & Sang, Huiying & Xu, Hanshen & Yang, Haiping & Chen, Hanping, 2018. "Effect of minerals and binders on particulate matter emission from biomass pellets combustion," Applied Energy, Elsevier, vol. 215(C), pages 106-115.
    11. Wojciech Rzeźnik & Ilona Rzeźnik & Paulina Mielcarek-Bocheńska & Mateusz Urbański, 2023. "Air Pollutants Emission during Co-Combustion of Animal Manure and Wood Pellets in 15 kW Boiler," Energies, MDPI, vol. 16(18), pages 1-17, September.
    12. Xiao, Zhihua & Yuan, Xingzhong & Jiang, Longbo & Chen, Xiaohong & Li, Hui & Zeng, Guangming & Leng, Lijian & Wang, Hou & Huang, Huajun, 2015. "Energy recovery and secondary pollutant emission from the combustion of co-pelletized fuel from municipal sewage sludge and wood sawdust," Energy, Elsevier, vol. 91(C), pages 441-450.
    13. Antonio Messineo & Roberto Volpe & Francesco Asdrubali, 2012. "Evaluation of Net Energy Obtainable from Combustion of Stabilised Olive Mill By-Products," Energies, MDPI, vol. 5(5), pages 1-14, May.
    14. Sungur, Bilal & Basar, Cem & Kaleli, Alirıza, 2023. "Multi-objective optimisation of the emission parameters and efficiency of pellet stove at different supply airflow positions based on machine learning approach," Energy, Elsevier, vol. 278(PA).
    15. Nunes, L.J.R. & Matias, J.C.O. & Catalão, J.P.S., 2016. "Wood pellets as a sustainable energy alternative in Portugal," Renewable Energy, Elsevier, vol. 85(C), pages 1011-1016.
    16. Shibo Wu & Jiannan Chen & Daoping Peng & Zheng Wu & Qin Li & Tao Huang, 2019. "Effects of Water Leaching on the Ash Sintering Problems of Wheat Straw," Energies, MDPI, vol. 12(3), pages 1-14, January.
    17. Wang, Liang & Skreiberg, Øyvind & Becidan, Michael & Li, Hailong, 2016. "Investigation of rye straw ash sintering characteristics and the effect of additives," Applied Energy, Elsevier, vol. 162(C), pages 1195-1204.
    18. Jianbiao Liu & Xuya Jiang & Yanhao Yuan & Huanhuan Chen & Wenbin Zhang & Hongzhen Cai & Feng Gao, 2022. "Densification of Yak Manure Biofuel Pellets and Evaluation of Parameters: Effects on Properties," Energies, MDPI, vol. 15(5), pages 1-14, February.
    19. Grzegorz Maj, 2018. "Emission Factors and Energy Properties of Agro and Forest Biomass in Aspect of Sustainability of Energy Sector," Energies, MDPI, vol. 11(6), pages 1-12, June.
    20. Qi Zhang & Zhenzhen Shi & Pengfei Zhang & Meng Zhang & Zhichao Li & Xi Chen & Jiping Zhou, 2018. "Ultrasonic-Assisted Pelleting of Sorghum Stalk: Predictive Models for Pellet Density and Durability Using Multiple Response Surface Methodology," Energies, MDPI, vol. 11(5), pages 1-18, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2422-:d:1086699. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.