IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i4p2025-d1072683.html
   My bibliography  Save this article

A Zero-Carbon Nuclear Energy Future? Lessons Learned from Perceptions of Climate Change and Nuclear Waste

Author

Listed:
  • Grace Dehner

    (Department of Community and Public Health, College of Health, Idaho State University, Pocatello, ID 83209, USA)

  • Mark K. McBeth

    (Department of Political Sciences, Idaho State University, Pocatello, ID 83209, USA)

  • Rae Moss

    (Idaho National Laboratory, Idaho Falls, ID 83415, USA)

  • Irene van Woerden

    (Department of Community and Public Health, College of Health, Idaho State University, Pocatello, ID 83209, USA)

Abstract

Nuclear energy is proposed as part of the solution to a net-zero carbon future. However, environmental issues with nuclear energy remain. In this study, a total of 1616 participants from across the U.S. stated their position on the following statements: “Nuclear energy is a clean energy source”, “Nuclear energy may be part of the solution to climate change”, “I am willing to accept the building of new nuclear power stations if it is environmentally friendly and had a zero-carbon footprint”, and “Nuclear power may lead to more pollution and environmental contamination”. Participants were also asked “Do you think nuclear energy is a zero-carbon energy?” Logistic regression was used to determine how concern around climate change and nuclear waste predicted participant responses. Latent class analysis (LCA) was used to determine segments of respondents based on their perceptions of nuclear energy and the environment. Nuclear energy was perceived as being zero-carbon (74% agree), but not necessarily clean (50% agree). Nuclear energy was perceived as part of the solution to climate change (51% agree), but concern around more pollution and environmental contamination remained (42% agree). Concern around climate change was associated with greater odds of acceptance of nuclear energy, while concern around nuclear waste was associated with the opposite. The LCA suggested a “favorable”, “neutral”, and “negative” class, for which approximately 40%, 52%, and 8% of participants, respectively, belonged. This study suggests conditional (or reluctant) support for nuclear energy is occurring.

Suggested Citation

  • Grace Dehner & Mark K. McBeth & Rae Moss & Irene van Woerden, 2023. "A Zero-Carbon Nuclear Energy Future? Lessons Learned from Perceptions of Climate Change and Nuclear Waste," Energies, MDPI, vol. 16(4), pages 1-16, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:2025-:d:1072683
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/4/2025/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/4/2025/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sovacool, Benjamin K., 2008. "Valuing the greenhouse gas emissions from nuclear power: A critical survey," Energy Policy, Elsevier, vol. 36(8), pages 2940-2953, August.
    2. Kopytko, Natalie & Perkins, John, 2011. "Climate change, nuclear power, and the adaptation-mitigation dilemma," Energy Policy, Elsevier, vol. 39(1), pages 318-333, January.
    3. Annukka Vainio & Riikka Paloniemi & Vilja Varho, 2017. "Weighing the Risks of Nuclear Energy and Climate Change: Trust in Different Information Sources, Perceived Risks, and Willingness to Pay for Alternatives to Nuclear Power," Risk Analysis, John Wiley & Sons, vol. 37(3), pages 557-569, March.
    4. Mark K. McBeth & Megan Warnement Wrobel & Irene van Woerden, 2023. "Political ideology and nuclear energy: Perception, proximity, and trust," Review of Policy Research, Policy Studies Organization, vol. 40(1), pages 88-118, January.
    5. Rothman, Stanley & Lichter, S. Robert, 1987. "Elite Ideology and Risk Perception in Nuclear Energy Policy," American Political Science Review, Cambridge University Press, vol. 81(2), pages 383-404, June.
    6. Dean Kyne & Bob Bolin, 2016. "Emerging Environmental Justice Issues in Nuclear Power and Radioactive Contamination," IJERPH, MDPI, vol. 13(7), pages 1-19, July.
    7. Ali Ahmad, 2021. "Increase in frequency of nuclear power outages due to changing climate," Nature Energy, Nature, vol. 6(7), pages 755-762, July.
    8. Kim, Younghwan & Kim, Minki & Kim, Wonjoon, 2013. "Effect of the Fukushima nuclear disaster on global public acceptance of nuclear energy," Energy Policy, Elsevier, vol. 61(C), pages 822-828.
    9. Yeo, Sara K. & Cacciatore, Michael A. & Brossard, Dominique & Scheufele, Dietram A. & Runge, Kristin & Su, Leona Y. & Kim, Jiyoun & Xenos, Michael & Corley, Elizabeth A., 2014. "Partisan amplification of risk: American perceptions of nuclear energy risk in the wake of the Fukushima Daiichi disaster," Energy Policy, Elsevier, vol. 67(C), pages 727-736.
    10. Meesha Iqbal & Rae Moss & Irene van Woerden, 2022. "Peoples’ Perception towards Nuclear Energy," Energies, MDPI, vol. 15(12), pages 1-9, June.
    11. Corner, Adam & Venables, Dan & Spence, Alexa & Poortinga, Wouter & Demski, Christina & Pidgeon, Nick, 2011. "Nuclear power, climate change and energy security: Exploring British public attitudes," Energy Policy, Elsevier, vol. 39(9), pages 4823-4833, September.
    12. Muellner, Nikolaus & Arnold, Nikolaus & Gufler, Klaus & Kromp, Wolfgang & Renneberg, Wolfgang & Liebert, Wolfgang, 2021. "Nuclear energy - The solution to climate change?," Energy Policy, Elsevier, vol. 155(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Yue & Ren, Tao, 2017. "When it is unfamiliar to me: Local acceptance of planned nuclear power plants in China in the post-fukushima era," Energy Policy, Elsevier, vol. 100(C), pages 113-125.
    2. Lam, J. & Li, V. & Reiner, D. & Han, Y., 2018. "Trust in Government and Effective Nuclear Safety Governance in Great Britain," Cambridge Working Papers in Economics 1827, Faculty of Economics, University of Cambridge.
    3. Jaesun Wang & Seoyong Kim, 2018. "Comparative Analysis of Public Attitudes toward Nuclear Power Energy across 27 European Countries by Applying the Multilevel Model," Sustainability, MDPI, vol. 10(5), pages 1-21, May.
    4. Jeong, Minsoo & You, Jung S., 2022. "Estimating the economic costs of nuclear power plant outages in a regulated market using a latent factor model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    5. Jessica E. Boscarino, 2019. "From Three Mile Island to Fukushima: the impact of analogy on attitudes toward nuclear power," Policy Sciences, Springer;Society of Policy Sciences, vol. 52(1), pages 21-42, March.
    6. Seoyong Kim & Jae Eun Lee & Donggeun Kim, 2019. "Searching for the Next New Energy in Energy Transition: Comparing the Impacts of Economic Incentives on Local Acceptance of Fossil Fuels, Renewable, and Nuclear Energies," Sustainability, MDPI, vol. 11(7), pages 1-32, April.
    7. Wang, Fan & Gu, Jibao & Wu, Jianlin, 2020. "Perspective taking, energy policy involvement, and public acceptance of nuclear energy: Evidence from China," Energy Policy, Elsevier, vol. 145(C).
    8. Bohdanowicz, Zbigniew & Łopaciuk-Gonczaryk, Beata & Gajda, Paweł & Rajewski, Adam, 2023. "Support for nuclear power and proenvironmental attitudes: The cases of Germany and Poland," Energy Policy, Elsevier, vol. 177(C).
    9. Jones, Christopher R. & Eiser, J. Richard & Gamble, Tim R., 2012. "Assessing the impact of framing on the comparative favourability of nuclear power as an electricity generating option in the UK," Energy Policy, Elsevier, vol. 41(C), pages 451-465.
    10. Ediger, Volkan Ş. & Kirkil, Gokhan & Çelebi, Emre & Ucal, Meltem & Kentmen-Çin, Çiğdem, 2018. "Turkish public preferences for energy," Energy Policy, Elsevier, vol. 120(C), pages 492-502.
    11. Vladimir M. Cvetković & Adem Öcal & Yuliya Lyamzina & Eric K. Noji & Neda Nikolić & Goran Milošević, 2021. "Nuclear Power Risk Perception in Serbia: Fear of Exposure to Radiation vs. Social Benefits," Energies, MDPI, vol. 14(9), pages 1-19, April.
    12. Ozcan, Mustafa, 2019. "Factors influencing the electricity generation preferences of Turkish citizens: Citizens' attitudes and policy recommendations in the context of climate change and environmental impact," Renewable Energy, Elsevier, vol. 132(C), pages 381-393.
    13. Bjoern Hagen & Adenike Opejin & K. David Pijawka, 2022. "Risk Perceptions and Amplification Effects over Time: Evaluating Fukushima Longitudinal Surveys," Sustainability, MDPI, vol. 14(13), pages 1-18, June.
    14. Norifumi Tsujikawa & Shoji Tsuchida & Takamasa Shiotani, 2016. "Changes in the Factors Influencing Public Acceptance of Nuclear Power Generation in Japan Since the 2011 Fukushima Daiichi Nuclear Disaster," Risk Analysis, John Wiley & Sons, vol. 36(1), pages 98-113, January.
    15. Jobin, Marilou & Siegrist, Michael, 2018. "We choose what we like – Affect as a driver of electricity portfolio choice," Energy Policy, Elsevier, vol. 122(C), pages 736-747.
    16. Siegrist, Michael & Sütterlin, Bernadette & Keller, Carmen, 2014. "Why have some people changed their attitudes toward nuclear power after the accident in Fukushima?," Energy Policy, Elsevier, vol. 69(C), pages 356-363.
    17. JongRoul Woo & Sesil Lim & Yong-Gil Lee & Sung-Yoon Huh, 2018. "Financial Feasibility and Social Acceptance for Reducing Nuclear Power Plants: A Contingent Valuation Study," Sustainability, MDPI, vol. 10(11), pages 1-16, October.
    18. Solveig Glomsrød & Taoyuan Wei & Torben Mideksa & Bjørn Samset, 2015. "Energy market impacts of nuclear power phase-out policies," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(8), pages 1511-1527, December.
    19. Wang, Jing & Li, Yazhou & Wu, Jianlin & Gu, Jibao & Xu, Shuo, 2020. "Environmental beliefs and public acceptance of nuclear energy in China: A moderated mediation analysis," Energy Policy, Elsevier, vol. 137(C).
    20. Pfenninger, Stefan & Keirstead, James, 2015. "Comparing concentrating solar and nuclear power as baseload providers using the example of South Africa," Energy, Elsevier, vol. 87(C), pages 303-314.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:2025-:d:1072683. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.