IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i3p1381-d1051073.html
   My bibliography  Save this article

Advanced Method of Variable Refrigerant Flow (VRF) Systems Designing to Forecast On-Site Operation—Part 1: General Approaches and Criteria

Author

Listed:
  • Mykola Radchenko

    (Department of Air Conditioning and Refrigeration, Admiral Makarov National University of Shipbuilding, Heroes of Ukraine Avenue 9, 54025 Mykolayiv, Ukraine)

  • Andrii Radchenko

    (Department of Air Conditioning and Refrigeration, Admiral Makarov National University of Shipbuilding, Heroes of Ukraine Avenue 9, 54025 Mykolayiv, Ukraine)

  • Eugeniy Trushliakov

    (Department of Air Conditioning and Refrigeration, Admiral Makarov National University of Shipbuilding, Heroes of Ukraine Avenue 9, 54025 Mykolayiv, Ukraine)

  • Anatoliy Pavlenko

    (Department of Building Physics and Renewable Energy, Kielce University of Technology, Avenue 1000—Years of the Polish State 7, 25-314 Kielce, Poland)

  • Roman Radchenko

    (Department of Air Conditioning and Refrigeration, Admiral Makarov National University of Shipbuilding, Heroes of Ukraine Avenue 9, 54025 Mykolayiv, Ukraine)

Abstract

All the energetic management and controlling strategies in ambient air conditioning systems (ACS) are aimed to match design load to current needs. This might be achieved by determining a rational value of design thermal load without overestimation that can minimize its deviation from the actual values. The application of variable refrigerant flow (VRF) systems with speed-regulated compressors (SRC) is considered as the most advanced trend in building air conditioning due to the ability of SRCs to cover changeable heat loads without lowering their efficiency. The level of load regulation by SRC is evaluated as the ratio of the load range, regulated by SCR, to the overall design load range. With this, the range of actual changeable loads is usually supposed to be covered by SRC entirely while keeping the rest, unregulated, and load range unchangeable. However, to confirm this, the rest load range behind the regulated one should be investigated to estimate the efficiency of SRC operation. Therefore, the approach to dividing the overall thermal load range of ambient air conditioning into the ranges of changeable and unchangeable loads to compare with those covered by SRC is used. From this approach, the method of rational designing and shearing a design refrigeration capacity in response to current loading, based on the principle of two-stage ambient air conditioning, has been widened on the VRF systems to estimate the efficiency of SCR application. This was realized by imposing the load ranges regulated by SRC onto the ranges of changeable and unchangeable loads within the overall range of actual loading. The proposed innovative criteria and indicators for rational shearing the load ranges to match current duties and load level evaluation can reveal the reserves for improving the efficiency of SRC compressor operation and the ACS of VRF type as a whole.

Suggested Citation

  • Mykola Radchenko & Andrii Radchenko & Eugeniy Trushliakov & Anatoliy Pavlenko & Roman Radchenko, 2023. "Advanced Method of Variable Refrigerant Flow (VRF) Systems Designing to Forecast On-Site Operation—Part 1: General Approaches and Criteria," Energies, MDPI, vol. 16(3), pages 1-18, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1381-:d:1051073
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/3/1381/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/3/1381/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Maraver, Daniel & Sin, Ana & Royo, Javier & Sebastián, Fernando, 2013. "Assessment of CCHP systems based on biomass combustion for small-scale applications through a review of the technology and analysis of energy efficiency parameters," Applied Energy, Elsevier, vol. 102(C), pages 1303-1313.
    2. Andrii Radchenko & Mykola Radchenko & Dariusz Mikielewicz & Anatoliy Pavlenko & Roman Radchenko & Serhiy Forduy, 2022. "Energy Saving in Trigeneration Plant for Food Industries," Energies, MDPI, vol. 15(3), pages 1-14, February.
    3. Zongming Yang & Roman Radchenko & Mykola Radchenko & Andrii Radchenko & Victoria Kornienko, 2022. "Cooling Potential of Ship Engine Intake Air Cooling and Its Realization on the Route Line," Sustainability, MDPI, vol. 14(22), pages 1-15, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Serhiy Serbin & Mykola Radchenko & Anatoliy Pavlenko & Kateryna Burunsuz & Andrii Radchenko & Daifen Chen, 2023. "Improving Ecological Efficiency of Gas Turbine Power System by Combusting Hydrogen and Hydrogen-Natural Gas Mixtures," Energies, MDPI, vol. 16(9), pages 1-23, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrii Radchenko & Mykola Radchenko & Hanna Koshlak & Roman Radchenko & Serhiy Forduy, 2022. "Enhancing the Efficiency of Integrated Energy Systems by the Redistribution of Heat Based on Monitoring Data," Energies, MDPI, vol. 15(22), pages 1-18, November.
    2. Mykola Radchenko & Zongming Yang & Anatoliy Pavlenko & Andrii Radchenko & Roman Radchenko & Hanna Koshlak & Guozhi Bao, 2023. "Increasing the Efficiency of Turbine Inlet Air Cooling in Climatic Conditions of China through Rational Designing—Part 1: A Case Study for Subtropical Climate: General Approaches and Criteria," Energies, MDPI, vol. 16(17), pages 1-16, August.
    3. Mykola Radchenko & Andrii Radchenko & Eugeniy Trushliakov & Anatoliy Pavlenko & Roman Radchenko, 2023. "Advanced Method of Variable Refrigerant Flow (VRF) System Design to Forecast on Site Operation—Part 3: Optimal Solutions to Minimize Sizes," Energies, MDPI, vol. 16(5), pages 1-18, March.
    4. Mykola Radchenko & Andrii Radchenko & Eugeniy Trushliakov & Hanna Koshlak & Roman Radchenko, 2023. "Advanced Method of Variable Refrigerant Flow (VRF) Systems Designing to Forecast Onsite Operation—Part 2: Phenomenological Simulation to Recoup Refrigeration Energy," Energies, MDPI, vol. 16(4), pages 1-17, February.
    5. Serhiy Serbin & Mykola Radchenko & Anatoliy Pavlenko & Kateryna Burunsuz & Andrii Radchenko & Daifen Chen, 2023. "Improving Ecological Efficiency of Gas Turbine Power System by Combusting Hydrogen and Hydrogen-Natural Gas Mixtures," Energies, MDPI, vol. 16(9), pages 1-23, April.
    6. Zongming Yang & Roman Radchenko & Mykola Radchenko & Andrii Radchenko & Victoria Kornienko, 2022. "Cooling Potential of Ship Engine Intake Air Cooling and Its Realization on the Route Line," Sustainability, MDPI, vol. 14(22), pages 1-15, November.
    7. Kim, Dong Kyu & Lee, Ji Sung & Kim, Jinwoo & Kim, Mo Se & Kim, Min Soo, 2017. "Parametric study and performance evaluation of an organic Rankine cycle (ORC) system using low-grade heat at temperatures below 80°C," Applied Energy, Elsevier, vol. 189(C), pages 55-65.
    8. Wang, Xuan & Shu, Gequn & Tian, Hua & Wang, Rui & Cai, Jinwen, 2020. "Operation performance comparison of CCHP systems with cascade waste heat recovery systems by simulation and operation optimisation," Energy, Elsevier, vol. 206(C).
    9. Chang, Huawei & Wan, Zhongmin & Zheng, Yao & Chen, Xi & Shu, Shuiming & Tu, Zhengkai & Chan, Siew Hwa & Chen, Rui & Wang, Xiaodong, 2017. "Energy- and exergy-based working fluid selection and performance analysis of a high-temperature PEMFC-based micro combined cooling heating and power system," Applied Energy, Elsevier, vol. 204(C), pages 446-458.
    10. Al Moussawi, Houssein & Fardoun, Farouk & Louahlia, Hasna, 2017. "Selection based on differences between cogeneration and trigeneration in various prime mover technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 491-511.
    11. Rafael Herrera-Limones & Ángel Luis León-Rodríguez & Álvaro López-Escamilla, 2019. "Solar Decathlon Latin America and Caribbean: Comfort and the Balance between Passive and Active Design," Sustainability, MDPI, vol. 11(13), pages 1-17, June.
    12. Wang, Jiang-Jiang & Yang, Kun & Xu, Zi-Long & Fu, Chao, 2015. "Energy and exergy analyses of an integrated CCHP system with biomass air gasification," Applied Energy, Elsevier, vol. 142(C), pages 317-327.
    13. Zhang, Jingxin & Hu, Qiang & Qu, Yiyuan & Dai, Yanjun & He, Yiliang & Wang, Chi-Hwa & Tong, Yen Wah, 2020. "Integrating food waste sorting system with anaerobic digestion and gasification for hydrogen and methane co-production," Applied Energy, Elsevier, vol. 257(C).
    14. Pablo Jimenez Zabalaga & Evelyn Cardozo & Luis A. Choque Campero & Joseph Adhemar Araoz Ramos, 2020. "Performance Analysis of a Stirling Engine Hybrid Power System," Energies, MDPI, vol. 13(4), pages 1-38, February.
    15. Li, C.Y. & Wu, J.Y. & Shen, Y. & Kan, X. & Dai, Y.J. & Wang, C.-H., 2018. "Evaluation of a combined cooling, heating, and power system based on biomass gasification in different climate zones in the U.S," Energy, Elsevier, vol. 144(C), pages 326-340.
    16. Maraver, Daniel & Sin, Ana & Sebastián, Fernando & Royo, Javier, 2013. "Environmental assessment of CCHP (combined cooling heating and power) systems based on biomass combustion in comparison to conventional generation," Energy, Elsevier, vol. 57(C), pages 17-23.
    17. Li, C.Y. & Deethayat, T. & Wu, J.Y. & Kiatsiriroat, T. & Wang, R.Z., 2018. "Simulation and evaluation of a biomass gasification-based combined cooling, heating, and power system integrated with an organic Rankine cycle," Energy, Elsevier, vol. 158(C), pages 238-255.
    18. Huang, Y. & Wang, Y.D. & Chen, Haisheng & Zhang, Xinjing & Mondol, J. & Shah, N. & Hewitt, N.J., 2017. "Performance analysis of biofuel fired trigeneration systems with energy storage for remote households," Applied Energy, Elsevier, vol. 186(P3), pages 530-538.
    19. Strzalka, Rafal & Schneider, Dietrich & Eicker, Ursula, 2017. "Current status of bioenergy technologies in Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 801-820.
    20. Stanek, Wojciech & Gazda, Wiesław & Kostowski, Wojciech, 2015. "Thermo-ecological assessment of CCHP (combined cold-heat-and-power) plant supported with renewable energy," Energy, Elsevier, vol. 92(P3), pages 279-289.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1381-:d:1051073. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.