IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i23p7809-d1288931.html
   My bibliography  Save this article

Renewable Energy Sources for Green Hydrogen Generation in Colombia and Applicable Case of Studies

Author

Listed:
  • Juan José Patiño

    (Centro de Investigación, Innovación y Desarrollo de Materiales—CIDEMAT, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, Medellín 050010, Colombia)

  • Carlos Velásquez

    (Centro de Investigación, Innovación y Desarrollo de Materiales—CIDEMAT, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, Medellín 050010, Colombia)

  • Edwin Ramirez

    (Centro de Investigación, Innovación y Desarrollo de Materiales—CIDEMAT, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, Medellín 050010, Colombia)

  • Rafael Betancur

    (Centro de Investigación, Innovación y Desarrollo de Materiales—CIDEMAT, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, Medellín 050010, Colombia)

  • Juan Felipe Montoya

    (Centro de Investigación, Innovación y Desarrollo de Materiales—CIDEMAT, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, Medellín 050010, Colombia)

  • Edwin Chica

    (Centro de Investigación, Innovación y Desarrollo de Materiales—CIDEMAT, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, Medellín 050010, Colombia)

  • Pablo Romero-Gómez

    (Department of Applied Physics I, University of Málaga, 29071 Málaga, Spain)

  • Arunachala Mada Kannan

    (The Polytechnic School, Ira A. Fulton Schools of Engineering, Arizona State University, Mesa, AZ 85212, USA)

  • Daniel Ramírez

    (Centro de Investigación, Innovación y Desarrollo de Materiales—CIDEMAT, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, Medellín 050010, Colombia)

  • Pedro Eusse

    (Empresas Públicas de Medellín (EPM), Medellín 050012, Colombia)

  • Franklin Jaramillo

    (Centro de Investigación, Innovación y Desarrollo de Materiales—CIDEMAT, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, Medellín 050010, Colombia)

Abstract

Electrification using renewable energy sources represents a clear path toward solving the current global energy crisis. In Colombia, this challenge also involves the diversification of the electrical energy sources to overcome the historical dependence on hydropower. In this context, green hydrogen represents a key energy carrier enabling the storage of renewable energy as well as directly powering industrial and transportation sectors. This work explores the realistic potential of the main renewable energy sources, including solar photovoltaics (8172 GW), hydropower (56 GW), wind (68 GW), and biomass (14 GW). In addition, a case study from abroad is presented, demonstrating the feasibility of using each type of renewable energy to generate green hydrogen in the country. At the end, an analysis of the most likely regions in the country and paths to deploy green hydrogen projects are presented, favoring hydropower in the short term and solar in the long run. By 2050, this energy potential will enable reaching a levelized cost of hydrogen (LCOH) of 1.7, 1.5, 3.1 and 1.4 USD/kg-H 2 for solar photovoltaic, wind, hydropower and biomass, respectively.

Suggested Citation

  • Juan José Patiño & Carlos Velásquez & Edwin Ramirez & Rafael Betancur & Juan Felipe Montoya & Edwin Chica & Pablo Romero-Gómez & Arunachala Mada Kannan & Daniel Ramírez & Pedro Eusse & Franklin Jarami, 2023. "Renewable Energy Sources for Green Hydrogen Generation in Colombia and Applicable Case of Studies," Energies, MDPI, vol. 16(23), pages 1-21, November.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:23:p:7809-:d:1288931
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/23/7809/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/23/7809/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. McKenna, R.C. & Bchini, Q. & Weinand, J.M. & Michaelis, J. & König, S. & Köppel, W. & Fichtner, W., 2018. "The future role of Power-to-Gas in the energy transition: Regional and local techno-economic analyses in Baden-Württemberg," Applied Energy, Elsevier, vol. 212(C), pages 386-400.
    2. Mikovits, Christian & Wetterlund, Elisabeth & Wehrle, Sebastian & Baumgartner, Johann & Schmidt, Johannes, 2021. "Stronger together: Multi-annual variability of hydrogen production supported by wind power in Sweden," Applied Energy, Elsevier, vol. 282(PB).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Farrokhifar, Meisam & Nie, Yinghui & Pozo, David, 2020. "Energy systems planning: A survey on models for integrated power and natural gas networks coordination," Applied Energy, Elsevier, vol. 262(C).
    2. Mikovits, Christian & Wetterlund, Elisabeth & Wehrle, Sebastian & Baumgartner, Johann & Schmidt, Johannes, 2021. "Stronger together: Multi-annual variability of hydrogen production supported by wind power in Sweden," Applied Energy, Elsevier, vol. 282(PB).
    3. Lewandowska-Bernat, Anna & Desideri, Umberto, 2018. "Opportunities of power-to-gas technology in different energy systems architectures," Applied Energy, Elsevier, vol. 228(C), pages 57-67.
    4. Lee, Boreum & Lim, Dongjun & Lee, Hyunjun & Byun, Manhee & Lim, Hankwon, 2021. "Techno-economic analysis of H2 energy storage system based on renewable energy certificate," Renewable Energy, Elsevier, vol. 167(C), pages 91-98.
    5. Corey Duncan & Robin Roche & Samir Jemei & Marie-Cécile Péra, 2022. "Techno-economical modelling of a power-to-gas system for plant configuration evaluation in a local context," Post-Print hal-03692975, HAL.
    6. Percebois, Jacques & Pommeret, Stanislas, 2019. "Storage cost induced by a large substitution of nuclear by intermittent renewable energies: The French case," Energy Policy, Elsevier, vol. 135(C).
    7. Xing, Xuetao & Lin, Jin & Song, Yonghua & Hu, Qiang & Zhou, You & Mu, Shujun, 2018. "Optimization of hydrogen yield of a high-temperature electrolysis system with coordinated temperature and feed factors at various loading conditions: A model-based study," Applied Energy, Elsevier, vol. 232(C), pages 368-385.
    8. Misconel, Steffi & Zöphel, Christoph & Möst, Dominik, 2021. "Assessing the value of demand response in a decarbonized energy system – A large-scale model application," Applied Energy, Elsevier, vol. 299(C).
    9. Bailera, Manuel & Peña, Begoña & Lisbona, Pilar & Romeo, Luis M., 2018. "Decision-making methodology for managing photovoltaic surplus electricity through Power to Gas: Combined heat and power in urban buildings," Applied Energy, Elsevier, vol. 228(C), pages 1032-1045.
    10. Yang, Chunmeng & Bu, Siqi & Fan, Yi & Wan, Wayne Xinwei & Wang, Ruoheng & Foley, Aoife, 2023. "Data-driven prediction and evaluation on future impact of energy transition policies in smart regions," Applied Energy, Elsevier, vol. 332(C).
    11. Sebastian Goers & Fiona Rumohr & Sebastian Fendt & Louis Gosselin & Gilberto M. Jannuzzi & Rodolfo D. M. Gomes & Stella M. S. Sousa & Reshmi Wolvers, 2020. "The Role of Renewable Energy in Regional Energy Transitions: An Aggregate Qualitative Analysis for the Partner Regions Bavaria, Georgia, Québec, São Paulo, Shandong, Upper Austria, and Western Cape," Sustainability, MDPI, vol. 13(1), pages 1-30, December.
    12. Toro, Claudia & Sciubba, Enrico, 2018. "Sabatier based power-to-gas system: Heat exchange network design and thermoeconomic analysis," Applied Energy, Elsevier, vol. 229(C), pages 1181-1190.
    13. Masoud Khatibi & Abbas Rabiee & Amir Bagheri, 2023. "Integrated Electricity and Gas Systems Planning: New Opportunities, and a Detailed Assessment of Relevant Issues," Sustainability, MDPI, vol. 15(8), pages 1-32, April.
    14. Janke, Leandro & McDonagh, Shane & Weinrich, Sören & Murphy, Jerry & Nilsson, Daniel & Hansson, Per-Anders & Nordberg, Åke, 2020. "Optimizing power-to-H2 participation in the Nord Pool electricity market: Effects of different bidding strategies on plant operation," Renewable Energy, Elsevier, vol. 156(C), pages 820-836.
    15. Bassano, Claudia & Deiana, Paolo & Vilardi, Giorgio & Verdone, Nicola, 2020. "Modeling and economic evaluation of carbon capture and storage technologies integrated into synthetic natural gas and power-to-gas plants," Applied Energy, Elsevier, vol. 263(C).
    16. Lamioni, Rachele & Bronzoni, Cristiana & Folli, Marco & Tognotti, Leonardo & Galletti, Chiara, 2022. "Feeding H2-admixtures to domestic condensing boilers: Numerical simulations of combustion and pollutant formation in multi-hole burners," Applied Energy, Elsevier, vol. 309(C).
    17. Andrea Dumančić & Nela Vlahinić Lenz & Goran Majstrović, 2023. "Can Hydrogen Production Be Economically Viable on the Existing Gas-Fired Power Plant Location? New Empirical Evidence," Energies, MDPI, vol. 16(9), pages 1-20, April.
    18. Tian, Nianfeng & Ding, Tao & Yang, Yongheng & Guo, Qinglai & Sun, Hongbin & Blaabjerg, Frede, 2018. "Confidentiality preservation in user-side integrated energy system management for cloud computing," Applied Energy, Elsevier, vol. 231(C), pages 1230-1245.
    19. Valerie Eveloy & Tesfaldet Gebreegziabher, 2018. "A Review of Projected Power-to-Gas Deployment Scenarios," Energies, MDPI, vol. 11(7), pages 1-52, July.
    20. Tabandeh, Abbas & Hossain, M.J. & Li, Li, 2022. "Integrated multi-stage and multi-zone distribution network expansion planning with renewable energy sources and hydrogen refuelling stations for fuel cell vehicles," Applied Energy, Elsevier, vol. 319(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:23:p:7809-:d:1288931. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.