IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i21p7396-d1272526.html
   My bibliography  Save this article

The Influence of the Installation Condition and Performance of Bifacial Solar Modules on Energy Yield

Author

Listed:
  • Caixia Zhang

    (Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
    LONGi Solar Technology (Taizhou) Co., Ltd., Taizhou 225300, China)

  • Honglie Shen

    (Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
    Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, China)

  • Hongzhi Liu

    (LONGi Solar Technology (Taizhou) Co., Ltd., Taizhou 225300, China)

Abstract

Compared with typical mono-facial photovoltaic (PV) solar modules, bifacial solar modules can make full use of reflected or scattered light from the ground and the surroundings to yield more electrical energy. The electrical energy on the rear side depends on multiple factors, such as the IV parameters of modules, packaging materials, and installation circumstances. In this work, the power generation output is simulated and researched using the PV-SYST software program, based on the different electrical parameters of bifacial solar modules and the installation conditions of the given PV systems. The influencing factors that affect the electrical energy are further analyzed using power-loss diagrams. The results show that improving the surface albedo can raise additional energy by 8.3%, thus behaving significantly better than the mono-facial module. Furthermore, improving the siting height and incidence angle modifier (IAM) of the modules can increase the additional energy by 3.1%. In contrast, adjusting the output current or voltage of the modules adds some energy, while the modules are of the same nominal power value. It was observed that the energy level of a photovoltaic system mainly depends on the installation circumstances, but the electrical parameters of the modules themselves contribute little.

Suggested Citation

  • Caixia Zhang & Honglie Shen & Hongzhi Liu, 2023. "The Influence of the Installation Condition and Performance of Bifacial Solar Modules on Energy Yield," Energies, MDPI, vol. 16(21), pages 1-17, November.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:21:p:7396-:d:1272526
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/21/7396/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/21/7396/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gu, Wenbo & Ma, Tao & Li, Meng & Shen, Lu & Zhang, Yijie, 2020. "A coupled optical-electrical-thermal model of the bifacial photovoltaic module," Applied Energy, Elsevier, vol. 258(C).
    2. Prasad, Manendra & Prasad, Ramendra, 2023. "Bifacial vs monofacial grid-connected solar photovoltaic for small islands: A case study of Fiji," Renewable Energy, Elsevier, vol. 203(C), pages 686-702.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tian, Xinyi & Wang, Jun & Yuan, Shuang & Ji, Jie & Ke, Wei & Wang, Chuyao, 2023. "Investigation on the electrical performance of a curved PV roof integrated with CIGS cells for traditional Chinese houses," Energy, Elsevier, vol. 263(PC).
    2. Johnson, Joji & Manikandan, S., 2023. "Experimental study and model development of bifacial photovoltaic power plants for Indian climatic zones," Energy, Elsevier, vol. 284(C).
    3. Li, Senji & Chen, Zhenwu & Liu, Xing & Zhang, Xiaochun & Zhou, Yong & Gu, Wenbo & Ma, Tao, 2021. "Numerical simulation of a novel pavement integrated photovoltaic thermal (PIPVT) module," Applied Energy, Elsevier, vol. 283(C).
    4. Zhang, Yijie & Ma, Tao & Yang, Hongxing & Li, Zongyu & Wang, Yuhong, 2023. "Simulation and experimental study on the energy performance of a pre-fabricated photovoltaic pavement," Applied Energy, Elsevier, vol. 342(C).
    5. Ma, Tao & Guo, Zichang & Shen, Lu & Liu, Xing & Chen, Zhenwu & Zhou, Yong & Zhang, Xiaochun, 2021. "Performance modelling of photovoltaic modules under actual operating conditions considering loss mechanism and energy distribution," Applied Energy, Elsevier, vol. 298(C).
    6. Preeti Kumari Sahu & J. N. Roy & Chandan Chakraborty & Senthilarasu Sundaram, 2021. "A New Model for Estimation of Energy Extraction from Bifacial Photovoltaic Modules," Energies, MDPI, vol. 14(16), pages 1-16, August.
    7. Wu, Jing & Zhang, Ling & Liu, Zhongbing & Wu, Zhenghong, 2021. "Coupled optical-electrical-thermal analysis of a semi-transparent photovoltaic glazing façade under building shadow," Applied Energy, Elsevier, vol. 292(C).
    8. Patel, M. Tahir & Ahmed, M. Sojib & Imran, Hassan & Butt, Nauman Z. & Khan, M. Ryyan & Alam, Muhammad A., 2021. "Global analysis of next-generation utility-scale PV: Tracking bifacial solar farms," Applied Energy, Elsevier, vol. 290(C).
    9. Tian, Xinyi & Wang, Jun & Wang, Chuyao & Ji, Jie, 2023. "Comparison analysis of the glazed and unglazed curved water-based PV/T roofs in the non-heating season," Renewable Energy, Elsevier, vol. 205(C), pages 899-917.
    10. Zheng, Likai & Xuan, Yimin, 2021. "Performance estimation of a V-shaped perovskite/silicon tandem device: A case study based on a bifacial heterojunction silicon cell," Applied Energy, Elsevier, vol. 301(C).
    11. Tian, Xinyi & Wang, Jun & Ji, Jie & Wang, Chuyao & Ke, Wei & Yuan, Shuang, 2023. "A multifunctional curved CIGS photovoltaic/thermal roof system: A numerical and experimental investigation," Energy, Elsevier, vol. 273(C).
    12. Arias-Rosales, Andrés & LeDuc, Philip R., 2020. "Comparing View Factor modeling frameworks for the estimation of incident solar energy," Applied Energy, Elsevier, vol. 277(C).
    13. Li, Zhenpeng & Ma, Tao, 2020. "Peer-to-peer electricity trading in grid-connected residential communities with household distributed photovoltaic," Applied Energy, Elsevier, vol. 278(C).
    14. Liu, Wenjie & Yao, Jian & Jia, Teng & Zhao, Yao & Dai, Yanjun & Zhu, Junjie & Novakovic, Vojislav, 2023. "The performance optimization of DX-PVT heat pump system for residential heating," Renewable Energy, Elsevier, vol. 206(C), pages 1106-1119.
    15. Elmehdi Mouhib & Leonardo Micheli & Florencia M. Almonacid & Eduardo F. Fernández, 2022. "Overview of the Fundamentals and Applications of Bifacial Photovoltaic Technology: Agrivoltaics and Aquavoltaics," Energies, MDPI, vol. 15(23), pages 1-30, November.
    16. Li, Zihao & Zhang, Wei & He, Bo & Xie, Lingzhi & Chen, Mo & Li, Jianhui & Zhao, Oufan & Wu, Xin, 2022. "A comprehensive life cycle assessment study of innovative bifacial photovoltaic applied on building," Energy, Elsevier, vol. 245(C).
    17. Minan Tang & Jinping Li & Jiandong Qiu & Xi Guo & Bo An & Yaqi Zhang & Wenjuan Wang, 2023. "MPPT Strategy of Waterborne Bifacial Photovoltaic Power Generation System Based on Economic Model Predictive Control," Energies, MDPI, vol. 17(1), pages 1-20, December.
    18. Salim Bouchakour & Daniel Valencia-Caballero & Alvaro Luna & Eduardo Roman & El Amin Kouadri Boudjelthia & Pedro Rodríguez, 2021. "Modelling and Simulation of Bifacial PV Production Using Monofacial Electrical Models," Energies, MDPI, vol. 14(14), pages 1-16, July.
    19. Sun, Bo & Lu, Lin & Yuan, Yanping & Ocłoń, Paweł, 2023. "Development and validation of a concise and anisotropic irradiance model for bifacial photovoltaic modules," Renewable Energy, Elsevier, vol. 209(C), pages 442-452.
    20. Li, Fuxiang & Wu, Wei, 2022. "Coupled electrical-thermal performance estimation of photovoltaic devices: A transient multiphysics framework with robust parameter extraction and 3-D thermal analysis," Applied Energy, Elsevier, vol. 319(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:21:p:7396-:d:1272526. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.