IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i9p3414-d810276.html
   My bibliography  Save this article

Highly Integrated Online Multi-Channel Electrochemical Impedance Spectroscopy Measurement Device for Fuel Cell Stack

Author

Listed:
  • Tiancai Ma

    (School of Automotive Studies, Tongji University, Shanghai 201804, China)

  • Jiajun Kang

    (School of Automotive Studies, Tongji University, Shanghai 201804, China)

  • Weikang Lin

    (School of Automotive Studies, Tongji University, Shanghai 201804, China)

  • Xinru Xu

    (School of Automotive Studies, Tongji University, Shanghai 201804, China)

  • Yanbo Yang

    (School of Automotive Studies, Tongji University, Shanghai 201804, China)

Abstract

Electrochemical impedance spectroscopy (EIS) can provide information about the internal state of fuel cells, which makes EIS an important tool for fuel cell fault diagnosis. However, high cost, large volume, and poor scalability are limitations of existing EIS measurement equipment. In this study, a multi-channel online fuel cell EIS measurement device was designed. In this device, based on multi-phase interleaved Boost topology and average current control, an excitation source, which can output 1~500 Hz, 10 A sinusoidal excitation current was designed and verified by model simulation. Then, based on the quadrature vector digital lock-in amplifier (DLIA) algorithm, an impedance measuring module that can achieve precise online impedance measurement and calculation was designed. A prototype was then built for the experiment. According to the experiment test, the amplitude error of the excitation source is less than 1.8%, and the frequency error is less than 0.3%. Compared with the reference data, the impedance measured by the prototype has a modulus error of less than 3.5% and a phase angle error of less than 1.5°. Moreover, the waveform control and impedance extraction function of the EIS measurement device is implemented on an embedded controller, which can cut the price and reduce the volume.

Suggested Citation

  • Tiancai Ma & Jiajun Kang & Weikang Lin & Xinru Xu & Yanbo Yang, 2022. "Highly Integrated Online Multi-Channel Electrochemical Impedance Spectroscopy Measurement Device for Fuel Cell Stack," Energies, MDPI, vol. 15(9), pages 1-23, May.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3414-:d:810276
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/9/3414/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/9/3414/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gong, Chengyuan & Xing, Lu & Liang, Cong & Tu, Zhengkai, 2022. "Modeling and dynamic characteristic simulation of air-cooled proton exchange membrane fuel cell stack for unmanned aerial vehicle," Renewable Energy, Elsevier, vol. 188(C), pages 1094-1104.
    2. Wang, Yun & Chen, Ken S. & Mishler, Jeffrey & Cho, Sung Chan & Adroher, Xavier Cordobes, 2011. "A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research," Applied Energy, Elsevier, vol. 88(4), pages 981-1007, April.
    3. Tiancai Ma & Jianmiao Xu & Ruitao Li & Naiyuan Yao & Yanbo Yang, 2021. "Online Short-Term Remaining Useful Life Prediction of Fuel Cell Vehicles Based on Cloud System," Energies, MDPI, vol. 14(10), pages 1-17, May.
    4. Gallo, Marco & Polverino, Pierpaolo & Mougin, Julie & Morel, Bertrand & Pianese, Cesare, 2020. "Coupling electrochemical impedance spectroscopy and model-based aging estimation for solid oxide fuel cell stacks lifetime prediction," Applied Energy, Elsevier, vol. 279(C).
    5. Wang, Hanqing & Gaillard, Arnaud & Hissel, Daniel, 2019. "A review of DC/DC converter-based electrochemical impedance spectroscopy for fuel cell electric vehicles," Renewable Energy, Elsevier, vol. 141(C), pages 124-138.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Jiamin & Zhang, Caizhi & Wan, Zhongmin & Chen, Xi & Chan, Siew Hwa & Tu, Zhengkai, 2022. "Progress and perspectives of integrated thermal management systems in PEM fuel cell vehicles: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    2. Antonio Guarino & Giovanni Petrone & Walter Zamboni, 2019. "Improving the Performance of a Dual Kalman Filter for the Identification of PEM Fuel Cells in Impedance Spectroscopy Experiments," Energies, MDPI, vol. 12(17), pages 1-18, September.
    3. Yin, Cong & Cao, Jishen & Tang, Qilin & Su, Yanghuai & Wang, Renkang & Li, Kai & Tang, Hao, 2022. "Study of internal performance of commercial-size fuel cell stack with 3D multi-physical model and high resolution current mapping," Applied Energy, Elsevier, vol. 323(C).
    4. Wang, Yujie & Sun, Zhendong & Li, Xiyun & Yang, Xiaoyu & Chen, Zonghai, 2019. "A comparative study of power allocation strategies used in fuel cell and ultracapacitor hybrid systems," Energy, Elsevier, vol. 189(C).
    5. Goudarzian, Alireza & Khosravi, Adel & Raeisi, Heidar Ali, 2020. "Analysis of a step-up dc/dc converter with capability of right-half plane zero cancellation," Renewable Energy, Elsevier, vol. 157(C), pages 1156-1170.
    6. Peng, Fei & Zhao, Yuanzhe & Li, Xiaopeng & Liu, Zhixiang & Chen, Weirong & Liu, Yang & Zhou, Donghua, 2017. "Development of master-slave energy management strategy based on fuzzy logic hysteresis state machine and differential power processing compensation for a PEMFC-LIB-SC hybrid tramway," Applied Energy, Elsevier, vol. 206(C), pages 346-363.
    7. Zhang, Xiaoqing & Yang, Jiapei & Ma, Xiao & Zhuge, Weilin & Shuai, Shijin, 2022. "Modelling and analysis on effects of penetration of microporous layer into gas diffusion layer in PEM fuel cells: Focusing on mass transport," Energy, Elsevier, vol. 254(PA).
    8. Liao, Shuxin & Qiu, Diankai & Yi, Peiyun & Peng, Linfa & Lai, Xinmin, 2022. "Modeling of a novel cathode flow field design with optimized sub-channels to improve drainage for proton exchange membrane fuel cells," Energy, Elsevier, vol. 261(PB).
    9. Zheng Huang & Laisuo Su & Yunjie Yang & Linsong Gao & Xinyu Liu & Heng Huang & Yubai Li & Yongchen Song, 2023. "Three-Dimensional Simulation on the Effects of Different Parameters and Pt Loading on the Long-Term Performance of Proton Exchange Membrane Fuel Cells," Sustainability, MDPI, vol. 15(4), pages 1-22, February.
    10. Vasallo, Manuel Jesús & Bravo, José Manuel & Andújar, José Manuel, 2013. "Optimal sizing for UPS systems based on batteries and/or fuel cell," Applied Energy, Elsevier, vol. 105(C), pages 170-181.
    11. Bae, Suk Joo & Kim, Seong-Joon & Lee, Jin-Hwa & Song, Inseob & Kim, Nam-In & Seo, Yongho & Kim, Ki Buem & Lee, Naesung & Park, Jun-Young, 2014. "Degradation pattern prediction of a polymer electrolyte membrane fuel cell stack with series reliability structure via durability data of single cells," Applied Energy, Elsevier, vol. 131(C), pages 48-55.
    12. Yan, Peijian & Tian, Pengfei & Cai, Cheng & Zhou, Shenghu & Yu, Xinhai & Zhao, Shuangliang & Tu, Shan-Tung & Deng, Chengwei & Sun, Yi, 2020. "Antioxidative and stable PdZn/ZnO/Al2O3 catalyst coatings concerning methanol steam reforming for fuel cell-powered vehicles," Applied Energy, Elsevier, vol. 268(C).
    13. Bolouri, Amir & Kang, Chung Gil, 2014. "Study on dimensional and corrosion properties of thixoformed A356 and AA7075 aluminum bipolar plates for proton exchange membrane fuel cells," Renewable Energy, Elsevier, vol. 71(C), pages 616-628.
    14. Chang, Huawei & Cai, Fengyang & Yu, Xianxian & Duan, Chen & Chan, Siew Hwa & Tu, Zhengkai, 2023. "Experimental study on the thermal management of an open-cathode air-cooled proton exchange membrane fuel cell stack with ultra-thin metal bipolar plates," Energy, Elsevier, vol. 263(PA).
    15. Yuan, Wei & Tang, Yong & Yang, Xiaojun & Wan, Zhenping, 2012. "Porous metal materials for polymer electrolyte membrane fuel cells – A review," Applied Energy, Elsevier, vol. 94(C), pages 309-329.
    16. Luka Mihanović & Željko Penga & Lei Xing & Viktor Hacker, 2021. "Combining Baffles and Secondary Porous Layers for Performance Enhancement of Proton Exchange Membrane Fuel Cells," Energies, MDPI, vol. 14(12), pages 1-28, June.
    17. Lin, Jui-Yen & Shih, Yu-Jen & Chen, Po-Yen & Huang, Yao-Hui, 2016. "Precipitation recovery of boron from aqueous solution by chemical oxo-precipitation at room temperature," Applied Energy, Elsevier, vol. 164(C), pages 1052-1058.
    18. Zhao, Lei & Yuan, Hao & Xie, Jiaping & Jiang, Shangfeng & Wei, Xuezhe & Tang, Wei & Ming, Pingwen & Dai, Haifeng, 2023. "Inconsistency evaluation of vehicle-oriented fuel cell stacks based on electrochemical impedance under dynamic operating conditions," Energy, Elsevier, vol. 265(C).
    19. Wang, Yujie & Sun, Zhendong & Chen, Zonghai, 2019. "Energy management strategy for battery/supercapacitor/fuel cell hybrid source vehicles based on finite state machine," Applied Energy, Elsevier, vol. 254(C).
    20. Wang, Junye, 2015. "Theory and practice of flow field designs for fuel cell scaling-up: A critical review," Applied Energy, Elsevier, vol. 157(C), pages 640-663.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3414-:d:810276. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.