IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i5p1835-d762344.html
   My bibliography  Save this article

Laccases—Versatile Enzymes Used to Reduce Environmental Pollution

Author

Listed:
  • Gigel Paraschiv

    (Department of Biotechnical Systems, Politehnica University of Bucharest, 060042 Bucharest, Romania)

  • Mariana Ferdes

    (Department of Biotechnical Systems, Politehnica University of Bucharest, 060042 Bucharest, Romania)

  • Mariana Ionescu

    (Department of Biotechnical Systems, Politehnica University of Bucharest, 060042 Bucharest, Romania)

  • Georgiana Moiceanu

    (Department of Management and Entrepreneurship, Politehnica University of Bucharest, 060042 Bucharest, Romania)

  • Bianca Stefania Zabava

    (Department of Biotechnical Systems, Politehnica University of Bucharest, 060042 Bucharest, Romania)

  • Mirela Nicoleta Dinca

    (Department of Biotechnical Systems, Politehnica University of Bucharest, 060042 Bucharest, Romania)

Abstract

The accumulation of waste and toxic compounds has become increasingly harmful to the environment and human health. In this context, the use of laccases has become a focus of interest, due to the properties of these versatile enzymes: low substrate specificity, and water formation as a non-toxic end product. Thus, we begin our study with a general overview of the importance of laccase for the environment and industry, starting with the sources of laccases (plant, bacterial and fungal laccases), the structure and mechanism of laccases, microbial biosynthesis, and the immobilization of laccases. Then, we continue with an overview of agro-waste treatment by laccases wherein we observe the importance of laccases for the biodisponibilization of substrates and the biodegradation of agro-industrial byproducts; we then show some aspects regarding the degradation of xenobiotic compounds, dyes, and pharmaceutical products. The objective of this research is to emphasize and fully investigate the effects of laccase action on the decomposition of lignocellulosic materials and on the removal of harmful compounds from soil and water, in order to provide a sustainable solution to reducing environmental pollution.

Suggested Citation

  • Gigel Paraschiv & Mariana Ferdes & Mariana Ionescu & Georgiana Moiceanu & Bianca Stefania Zabava & Mirela Nicoleta Dinca, 2022. "Laccases—Versatile Enzymes Used to Reduce Environmental Pollution," Energies, MDPI, vol. 15(5), pages 1-31, March.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:5:p:1835-:d:762344
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/5/1835/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/5/1835/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andreas Otto Wagner & Nina Lackner & Mira Mutschlechner & Eva Maria Prem & Rudolf Markt & Paul Illmer, 2018. "Biological Pretreatment Strategies for Second-Generation Lignocellulosic Resources to Enhance Biogas Production," Energies, MDPI, vol. 11(7), pages 1-14, July.
    2. Mustafa, Ahmed M. & Poulsen, Tjalfe G. & Sheng, Kuichuan, 2016. "Fungal pretreatment of rice straw with Pleurotus ostreatus and Trichoderma reesei to enhance methane production under solid-state anaerobic digestion," Applied Energy, Elsevier, vol. 180(C), pages 661-671.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kana Puspita & Williams Chiari & Syahrun N. Abdulmadjid & Rinaldi Idroes & Muhammad Iqhrammullah, 2022. "Four Decades of Laccase Research for Wastewater Treatment: Insights from Bibliometric Analysis," IJERPH, MDPI, vol. 20(1), pages 1-16, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Huaiwen & Yao, Yiqing & Deng, Jun & Zhang, Jian-Li & Qiu, Yaojing & Li, Guofu & Liu, Jian, 2022. "Hydrogen production via anaerobic digestion of coal modified by white-rot fungi and its application benefits analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    2. Tabatabaei, Meisam & Aghbashlo, Mortaza & Valijanian, Elena & Kazemi Shariat Panahi, Hamed & Nizami, Abdul-Sattar & Ghanavati, Hossein & Sulaiman, Alawi & Mirmohamadsadeghi, Safoora & Karimi, Keikhosr, 2020. "A comprehensive review on recent biological innovations to improve biogas production, Part 1: Upstream strategies," Renewable Energy, Elsevier, vol. 146(C), pages 1204-1220.
    3. Mariana Ferdeș & Mirela Nicoleta Dincă & Georgiana Moiceanu & Bianca Ștefania Zăbavă & Gigel Paraschiv, 2020. "Microorganisms and Enzymes Used in the Biological Pretreatment of the Substrate to Enhance Biogas Production: A Review," Sustainability, MDPI, vol. 12(17), pages 1-26, September.
    4. Alberto Benato & Alarico Macor, 2019. "Italian Biogas Plants: Trend, Subsidies, Cost, Biogas Composition and Engine Emissions," Energies, MDPI, vol. 12(6), pages 1-31, March.
    5. Małgorzata Hawrot-Paw & Aleksander Stańczuk, 2022. "From Waste Biomass to Cellulosic Ethanol by Separate Hydrolysis and Fermentation (SHF) with Trichoderma viride," Sustainability, MDPI, vol. 15(1), pages 1-10, December.
    6. Ndayisenga, Fabrice & Yu, Zhisheng & Zheng, Jianzhong & Wang, Bobo & Liang, Hongxia & Phulpoto, Irfan Ali & Habiyakare, Telesphore & Zhou, Dandan, 2021. "Microbial electrohydrogenesis cell and dark fermentation integrated system enhances biohydrogen production from lignocellulosic agricultural wastes: Substrate pretreatment towards optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    7. Wang, Xuezhi & Lei, Zhongfang & Shimizu, Kazuya & Zhang, Zhenya & Lee, Duu-Jong, 2021. "Recent advancements in nanobubble water technology and its application in energy recovery from organic solid wastes towards a greater environmental friendliness of anaerobic digestion system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    8. Schneider, Willian Daniel Hahn & Fontana, Roselei Claudete & Baudel, Henrique Macedo & de Siqueira, Félix Gonçalves & Rencoret, Jorge & Gutiérrez, Ana & de Eugenio, Laura Isabel & Prieto, Alicia & Mar, 2020. "Lignin degradation and detoxification of eucalyptus wastes by on-site manufacturing fungal enzymes to enhance second-generation ethanol yield," Applied Energy, Elsevier, vol. 262(C).
    9. Musa Manga & Christian Aragón-Briceño & Panagiotis Boutikos & Swaib Semiyaga & Omotunde Olabinjo & Chimdi C. Muoghalu, 2023. "Biochar and Its Potential Application for the Improvement of the Anaerobic Digestion Process: A Critical Review," Energies, MDPI, vol. 16(10), pages 1-23, May.
    10. Spyridon Achinas & Gerrit Jan Willem Euverink, 2019. "Effect of Combined Inoculation on Biogas Production from Hardly Degradable Material," Energies, MDPI, vol. 12(2), pages 1-13, January.
    11. Anu, & Kumar, Anil & Rapoport, Alexander & Kunze, Gotthard & Kumar, Sanjeev & Singh, Davender & Singh, Bijender, 2020. "Multifarious pretreatment strategies for the lignocellulosic substrates for the generation of renewable and sustainable biofuels: A review," Renewable Energy, Elsevier, vol. 160(C), pages 1228-1252.
    12. Ghosh, Shiladitya & Chowdhury, Ranjana & Bhattacharya, Pinaki, 2017. "Sustainability of cereal straws for the fermentative production of second generation biofuels: A review of the efficiency and economics of biochemical pretreatment processes," Applied Energy, Elsevier, vol. 198(C), pages 284-298.
    13. Dimitar Karakashev & Yifeng Zhang, 2018. "BioEnergy and BioChemicals Production from Biomass and Residual Resources," Energies, MDPI, vol. 11(8), pages 1-6, August.
    14. Gupte, Ameya Pankaj & Basaglia, Marina & Casella, Sergio & Favaro, Lorenzo, 2022. "Rice waste streams as a promising source of biofuels: feedstocks, biotechnologies and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    15. Brémond, Ulysse & de Buyer, Raphaëlle & Steyer, Jean-Philippe & Bernet, Nicolas & Carrere, Hélène, 2018. "Biological pretreatments of biomass for improving biogas production: an overview from lab scale to full-scale," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 583-604.
    16. Lina Luo & Youpei Qu & Weijia Gong & Liyuan Qin & Wenzhe Li & Yong Sun, 2021. "Effect of Particle Size on the Aerobic and Anaerobic Digestion Characteristics of Whole Rice Straw," Energies, MDPI, vol. 14(13), pages 1-15, July.
    17. Li, Yue & Chen, Yinguang & Wu, Jiang, 2019. "Enhancement of methane production in anaerobic digestion process: A review," Applied Energy, Elsevier, vol. 240(C), pages 120-137.
    18. Baramee, Sirilak & Siriatcharanon, Ake-kavitch & Ketbot, Prattana & Teeravivattanakit, Thitiporn & Waeonukul, Rattiya & Pason, Patthra & Tachaapaikoon, Chakrit & Ratanakhanokchai, Khanok & Phitsuwan, , 2020. "Biological pretreatment of rice straw with cellulase-free xylanolytic enzyme-producing Bacillus firmus K-1: Structural modification and biomass digestibility," Renewable Energy, Elsevier, vol. 160(C), pages 555-563.
    19. Andreas Otto Wagner & Nina Lackner & Mira Mutschlechner & Eva Maria Prem & Rudolf Markt & Paul Illmer, 2018. "Biological Pretreatment Strategies for Second-Generation Lignocellulosic Resources to Enhance Biogas Production," Energies, MDPI, vol. 11(7), pages 1-14, July.
    20. Sunčica Beluhan & Katarina Mihajlovski & Božidar Šantek & Mirela Ivančić Šantek, 2023. "The Production of Bioethanol from Lignocellulosic Biomass: Pretreatment Methods, Fermentation, and Downstream Processing," Energies, MDPI, vol. 16(19), pages 1-38, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:5:p:1835-:d:762344. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.