IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i21p7988-d955228.html
   My bibliography  Save this article

Comparison of “Zero Emission” Vehicles with Petrol and Hybrid Cars in Terms of Total CO 2 Release—A Case Study for Romania, Poland, Norway and Germany

Author

Listed:
  • Klaus Lieutenant

    (Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, D-52425 Jülich, Germany)

  • Ana Vassileva Borissova

    (Faculty of Education and Arts, Nord University, 8049 Bodø, Norway)

  • Mohamad Mustafa

    (Department of Building, Energy and Material Technology, UiT The Arctic University of Norway, 8514 Narvik, Norway)

  • Nick McCarthy

    (Cenex, Holywell Building, Hollywell Park, Ashby Road, Loughborough LE11 3UZ, UK)

  • Ioan Iordache

    (Research-Development and Testing National Institute for Electrical Engineering, ICMET, Str. Decebal 118, 200746 Craiova, Romania
    National Research and Development Institute for Cryogenics and Isotopic Technologies, ICSI, Str. Uznei 4, 240050 Râmnicu Vâlcea, Romania)

Abstract

The authors compare the energy consumption and CO 2 emissions from vehicles using internal combustion engines (ICE), battery electric vehicles (BEV), fuel cell electric vehicles (FCEV), and two types of hybrid vehicles, BEV-ICE hybrid and BEV-FCEV hybrid. This paper considers several scenarios for four countries’ electricity production from primary energy sources to estimate total CO 2 release. Energy consumption of the vehicle per 100 km, emissions during manufacturing, battery production, and lifecycle of the vehicle are considered in the total amount evaluation of CO 2 released. The results show that with current technologies for battery manufacturing, and a significant proportion of national grid electricity delivered by fossil fuels, BEV is the best choice to reduce carbon emissions for shorter driving ranges. In the case of electricity generation mainly by low-carbon sources, FCEV and BEV-FCEV hybrid vehicles end up with lower carbon dioxide emissions. In contrast, with electricity mainly generated from fossil fuels, electric vehicles do not reduce CO 2 emissions compared to combustion cars.

Suggested Citation

  • Klaus Lieutenant & Ana Vassileva Borissova & Mohamad Mustafa & Nick McCarthy & Ioan Iordache, 2022. "Comparison of “Zero Emission” Vehicles with Petrol and Hybrid Cars in Terms of Total CO 2 Release—A Case Study for Romania, Poland, Norway and Germany," Energies, MDPI, vol. 15(21), pages 1-13, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:7988-:d:955228
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/21/7988/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/21/7988/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Patil, V. & Shastry, V. & Himabindu, M. & Ravikrishna, R.V., 2016. "Life-cycle analysis of energy and greenhouse gas emissions of automotive fuels in India: Part 2 – Well-to-wheels analysis," Energy, Elsevier, vol. 96(C), pages 699-712.
    2. Mari Svensson, Ann & Møller-Holst, Steffen & Glöckner, Ronny & Maurstad, Ola, 2007. "Well-to-wheel study of passenger vehicles in the Norwegian energy system," Energy, Elsevier, vol. 32(4), pages 437-445.
    3. Wang, Dawei & Zamel, Nada & Jiao, Kui & Zhou, Yibo & Yu, Shuhai & Du, Qing & Yin, Yan, 2013. "Life cycle analysis of internal combustion engine, electric and fuel cell vehicles for China," Energy, Elsevier, vol. 59(C), pages 402-412.
    4. Choi, Wonjae & Yoo, Eunji & Seol, Eunsu & Kim, Myoungsoo & Song, Han Ho, 2020. "Greenhouse gas emissions of conventional and alternative vehicles: Predictions based on energy policy analysis in South Korea," Applied Energy, Elsevier, vol. 265(C).
    5. Haugen, Molly J. & Paoli, Leonardo & Cullen, Jonathan & Cebon, David & Boies, Adam M., 2021. "A fork in the road: Which energy pathway offers the greatest energy efficiency and CO2 reduction potential for low-carbon vehicles?," Applied Energy, Elsevier, vol. 283(C).
    6. Varga, Bogdan Ovidiu, 2013. "Electric vehicles, primary energy sources and CO2 emissions: Romanian case study," Energy, Elsevier, vol. 49(C), pages 61-70.
    7. Noshin Omar & Mohamed Daowd & Peter van den Bossche & Omar Hegazy & Jelle Smekens & Thierry Coosemans & Joeri van Mierlo, 2012. "Rechargeable Energy Storage Systems for Plug-in Hybrid Electric Vehicles—Assessment of Electrical Characteristics," Energies, MDPI, vol. 5(8), pages 1-37, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haugen, Molly J. & Paoli, Leonardo & Cullen, Jonathan & Cebon, David & Boies, Adam M., 2021. "A fork in the road: Which energy pathway offers the greatest energy efficiency and CO2 reduction potential for low-carbon vehicles?," Applied Energy, Elsevier, vol. 283(C).
    2. Diskin, David & Kuhr, Yonah & Ben-Hamo, Ido Yohai & Spatari, Sabrina & Tartakovsky, Leonid, 2023. "Environmental benefits of combined electro-thermo-chemical technology over battery-electric powertrains," Applied Energy, Elsevier, vol. 351(C).
    3. Gupta, S. & Patil, V. & Himabindu, M. & Ravikrishna, R.V., 2016. "Life-cycle analysis of energy and greenhouse gas emissions of automotive fuels in India: Part 1 – Tank-to-Wheel analysis," Energy, Elsevier, vol. 96(C), pages 684-698.
    4. Patil, V. & Shastry, V. & Himabindu, M. & Ravikrishna, R.V., 2016. "Life-cycle analysis of energy and greenhouse gas emissions of automotive fuels in India: Part 2 – Well-to-wheels analysis," Energy, Elsevier, vol. 96(C), pages 699-712.
    5. Omar, Noshin & Monem, Mohamed Abdel & Firouz, Yousef & Salminen, Justin & Smekens, Jelle & Hegazy, Omar & Gaulous, Hamid & Mulder, Grietus & Van den Bossche, Peter & Coosemans, Thierry & Van Mierlo, J, 2014. "Lithium iron phosphate based battery – Assessment of the aging parameters and development of cycle life model," Applied Energy, Elsevier, vol. 113(C), pages 1575-1585.
    6. Sandra Castano-Solis & Daniel Serrano-Jimenez & Lucia Gauchia & Javier Sanz, 2017. "The Influence of BMSs on the Characterization and Modeling of Series and Parallel Li-Ion Packs," Energies, MDPI, vol. 10(3), pages 1-13, February.
    7. Xiong, Rui & Sun, Fengchun & He, Hongwen & Nguyen, Trong Duy, 2013. "A data-driven adaptive state of charge and power capability joint estimator of lithium-ion polymer battery used in electric vehicles," Energy, Elsevier, vol. 63(C), pages 295-308.
    8. Berecibar, M. & Gandiaga, I. & Villarreal, I. & Omar, N. & Van Mierlo, J. & Van den Bossche, P., 2016. "Critical review of state of health estimation methods of Li-ion batteries for real applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 572-587.
    9. Hong, Sanghyun & Kim, Eunsung & Jeong, Saerok, 2023. "Evaluating the sustainability of the hydrogen economy using multi-criteria decision-making analysis in Korea," Renewable Energy, Elsevier, vol. 204(C), pages 485-492.
    10. Ruffini, Eleonora & Wei, Max, 2018. "Future costs of fuel cell electric vehicles in California using a learning rate approach," Energy, Elsevier, vol. 150(C), pages 329-341.
    11. Nenming Wang & Guwen Tang, 2022. "A Review on Environmental Efficiency Evaluation of New Energy Vehicles Using Life Cycle Analysis," Sustainability, MDPI, vol. 14(6), pages 1-35, March.
    12. Hegazy, Omar & Barrero, Ricardo & Van den Bossche, Peter & El Baghdadi, Mohamed & Smekens, Jelle & Van Mierlo, Joeri & Vriens, Wouter & Bogaerts, Bruno, 2016. "Modeling, analysis and feasibility study of new drivetrain architectures for off-highway vehicles," Energy, Elsevier, vol. 109(C), pages 1056-1074.
    13. Noshin Omar & Peter Van den Bossche & Thierry Coosemans & Joeri Van Mierlo, 2013. "Peukert Revisited—Critical Appraisal and Need for Modification for Lithium-Ion Batteries," Energies, MDPI, vol. 6(11), pages 1-17, October.
    14. Shovon Goutam & Jean-Marc Timmermans & Noshin Omar & Peter Van den Bossche & Joeri Van Mierlo, 2015. "Comparative Study of Surface Temperature Behavior of Commercial Li-Ion Pouch Cells of Different Chemistries and Capacities by Infrared Thermography," Energies, MDPI, vol. 8(8), pages 1-18, August.
    15. Robaina, Margarita & Neves, Ana, 2021. "Complete decomposition analysis of CO2 emissions intensity in the transport sector in Europe," Research in Transportation Economics, Elsevier, vol. 90(C).
    16. Ma, Mina & Li, Xiaoyu & Gao, Wei & Sun, Jinhua & Wang, Qingsong & Mi, Chris, 2022. "Multi-fault diagnosis for series-connected lithium-ion battery pack with reconstruction-based contribution based on parallel PCA-KPCA," Applied Energy, Elsevier, vol. 324(C).
    17. Li, Jingjing & Nian, Victor & Jiao, Jianling, 2022. "Diffusion and benefits evaluation of electric vehicles under policy interventions based on a multiagent system dynamics model," Applied Energy, Elsevier, vol. 309(C).
    18. Raslavičius, Laurencas & Azzopardi, Brian & Keršys, Artūras & Starevičius, Martynas & Bazaras, Žilvinas & Makaras, Rolandas, 2015. "Electric vehicles challenges and opportunities: Lithuanian review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 786-800.
    19. Rusich, Andrea & Danielis, Romeo, 2013. "The private and social monetary costs and the energy consumption of a car. An estimate for seven cars with different vehicle technologies on sale in Italy," Working Papers 1301, SIET Società Italiana di Economia dei Trasporti e della Logistica, revised 2013.
    20. Qiao, Qinyu & Zhao, Fuquan & Liu, Zongwei & Jiang, Shuhua & Hao, Han, 2017. "Cradle-to-gate greenhouse gas emissions of battery electric and internal combustion engine vehicles in China," Applied Energy, Elsevier, vol. 204(C), pages 1399-1411.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:7988-:d:955228. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.