IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i19p7238-d931643.html
   My bibliography  Save this article

Reliability Analysis and Economic Evaluation of Thermal Reflective Insulators

Author

Listed:
  • Davide Borelli

    (Department of Mechanical, Energy, Management and Transport Engineering, Division of Thermal Energy and Environmental Conditioning, University of Genoa, Via all’Opera Pia 15/A, 16145 Genoa, Italy)

  • Alessandro Cavalletti

    (Department of Mechanical, Energy, Management and Transport Engineering, Division of Thermal Energy and Environmental Conditioning, University of Genoa, Via all’Opera Pia 15/A, 16145 Genoa, Italy)

  • Paolo Cavalletti

    (Department of Mechanical, Energy, Management and Transport Engineering, Division of Thermal Energy and Environmental Conditioning, University of Genoa, Via all’Opera Pia 15/A, 16145 Genoa, Italy)

  • Luca Antonio Tagliafico

    (Department of Mechanical, Energy, Management and Transport Engineering, Division of Thermal Energy and Environmental Conditioning, University of Genoa, Via all’Opera Pia 15/A, 16145 Genoa, Italy)

Abstract

High-performance thermal insulators allow a dramatic reduction in the thickness of coatings, thanks to their low thermal conductivity. This study provides an overview about thermal insulation materials, with regards to heat reflective insulators in particular. Then, the numerical investigation method adopted to compute the thermal resistance associated with reflective insulators is introduced. This method has been used in turn to check the accuracy of the declared, measured performance of different, heat-reflective materials on the market. Many manufacturers of reflective insulators were available to provide information and a good agreement between the declared and expected thermal resistance has been found. The choice of a non-experimental approach is meant to check the validity of an already performed test on a reflective insulator using a predictive approach instead of standard, additional testing. Then, the insulation of five typical walls at three different sites in Italy has been simulated, showing that most of heat-reflective materials cannot achieve the maximum required transmittance. Interstitial condensation is likely to occur in specific cases, also because of the aluminum layers inside. The economic analyses showed comparable costs for both heat reflective and traditional insulators, and their cost effectiveness needs to be evaluated case by case.

Suggested Citation

  • Davide Borelli & Alessandro Cavalletti & Paolo Cavalletti & Luca Antonio Tagliafico, 2022. "Reliability Analysis and Economic Evaluation of Thermal Reflective Insulators," Energies, MDPI, vol. 15(19), pages 1-26, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7238-:d:931643
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/19/7238/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/19/7238/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alam, M. & Singh, H. & Limbachiya, M.C., 2011. "Vacuum Insulation Panels (VIPs) for building construction industry – A review of the contemporary developments and future directions," Applied Energy, Elsevier, vol. 88(11), pages 3592-3602.
    2. Mavromatidis, Lazaros Elias & Bykalyuk, Anna & Lequay, Hervé, 2013. "Development of polynomial regression models for composite dynamic envelopes’ thermal performance forecasting," Applied Energy, Elsevier, vol. 104(C), pages 379-391.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lazaros Mavromatidis, 2022. "Constructal Evaluation of Polynomial Meta-Models for Dynamic Thermal Absorptivity Forecasting for Mixed-Mode nZEB Heritage Building Applications," Energies, MDPI, vol. 16(1), pages 1-26, December.
    2. Ascione, Fabrizio & Bianco, Nicola & Rossi, Filippo de’ & Turni, Gianluca & Vanoli, Giuseppe Peter, 2012. "Different methods for the modelling of thermal bridges into energy simulation programs: Comparisons of accuracy for flat heterogeneous roofs in Italian climates," Applied Energy, Elsevier, vol. 97(C), pages 405-418.
    3. M. M. Sarafraz & Alireza Dareh Baghi & Mohammad Reza Safaei & Arturo S. Leon & R. Ghomashchi & Marjan Goodarzi & Cheng-Xian Lin, 2019. "Assessment of Iron Oxide (III)–Therminol 66 Nanofluid as a Novel Working Fluid in a Convective Radiator Heating System for Buildings," Energies, MDPI, vol. 12(22), pages 1-13, November.
    4. Lü, Xiaoshu & Lu, Tao & Kibert, Charles J. & Viljanen, Martti, 2015. "Modeling and forecasting energy consumption for heterogeneous buildings using a physical–statistical approach," Applied Energy, Elsevier, vol. 144(C), pages 261-275.
    5. Anna Życzyńska & Zbigniew Suchorab & Jan Kočí & Robert Černý, 2020. "Energy Effects of Retrofitting the Educational Facilities Located in South-Eastern Poland," Energies, MDPI, vol. 13(10), pages 1-16, May.
    6. Yu, Sisi & Liu, Yanfeng & Wang, Dengjia & Bahaj, AbuBakr S. & Wu, Yue & Liu, Jiaping, 2021. "Review of thermal and environmental performance of prefabricated buildings: Implications to emission reductions in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    7. Miroslav Čekon & Richard Slávik, 2017. "A Non-Ventilated Solar Façade Concept Based on Selective and Transparent Insulation Material Integration: An Experimental Study," Energies, MDPI, vol. 10(6), pages 1-21, June.
    8. Ravi Kumar Kottala & Bharat Kumar Chigilipalli & Srinivasnaik Mukuloth & Ragavanantham Shanmugam & Venkata Charan Kantumuchu & Sirisha Bhadrakali Ainapurapu & Muralimohan Cheepu, 2023. "Thermal Degradation Studies and Machine Learning Modelling of Nano-Enhanced Sugar Alcohol-Based Phase Change Materials for Medium Temperature Applications," Energies, MDPI, vol. 16(5), pages 1-24, February.
    9. Gonçalves, Márcio & Simões, Nuno & Serra, Catarina & Flores-Colen, Inês, 2020. "A review of the challenges posed by the use of vacuum panels in external insulation finishing systems," Applied Energy, Elsevier, vol. 257(C).
    10. Rashidi, Saman & Esfahani, Javad Abolfazli & Karimi, Nader, 2018. "Porous materials in building energy technologies—A review of the applications, modelling and experiments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 229-247.
    11. Abdul Mujeebu, Muhammad & Alshamrani, Othman Subhi, 2016. "Prospects of energy conservation and management in buildings – The Saudi Arabian scenario versus global trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1647-1663.
    12. Bangqi Chen & Ankang Kan & Zhaofeng Chen & Jiaxiang Zhang & Lixia Yang, 2023. "Investigation on Effective Thermal Conductivity of Fibrous Porous Materials as Vacuum Insulation Panels’ Core Using Lattice Boltzmann Method," Energies, MDPI, vol. 16(9), pages 1-18, April.
    13. Li, Xiangyu & Chen, Huisu & Li, Huiqiang & Liu, Lin & Lu, Zeyu & Zhang, Tao & Duan, Wen Hui, 2015. "Integration of form-stable paraffin/nanosilica phase change material composites into vacuum insulation panels for thermal energy storage," Applied Energy, Elsevier, vol. 159(C), pages 601-609.
    14. Chwieduk, Dorota A., 2017. "Towards modern options of energy conservation in buildings," Renewable Energy, Elsevier, vol. 101(C), pages 1194-1202.
    15. James Woudhuysen, 2012. "Innovation in Energy: Expressions of a Crisis, and Some Ways Forward," Energy & Environment, , vol. 23(6-7), pages 933-978, October.
    16. Nemanič, V. & Zajec, B. & Žumer, M. & Figar, N. & Kavšek, M. & Mihelič, I., 2014. "Synthesis and characterization of melamine–formaldehyde rigid foams for vacuum thermal insulation," Applied Energy, Elsevier, vol. 114(C), pages 320-326.
    17. Fabrizio Cumo & Federica Giustini & Elisa Pennacchia & Carlo Romeo, 2020. "Support Decision Tool for Sustainable Energy Requalification the Existing Residential Building Stock. The Case Study of Trevignano Romano," Energies, MDPI, vol. 14(1), pages 1-16, December.
    18. Biswas, Kaushik & Desjarlais, Andre & Smith, Douglas & Letts, John & Yao, Jennifer & Jiang, Timothy, 2018. "Development and thermal performance verification of composite insulation boards containing foam-encapsulated vacuum insulation panels," Applied Energy, Elsevier, vol. 228(C), pages 1159-1172.
    19. Ziortza Egiluz & Jesús Cuadrado & Andoni Kortazar & Ignacio Marcos, 2021. "Multi-Criteria Decision-Making Method for Sustainable Energy-Saving Retrofit Façade Solutions," Sustainability, MDPI, vol. 13(23), pages 1-25, November.
    20. Abdul Mujeebu, Muhammad & Ashraf, Noman & Alsuwayigh, Abdulkarim H., 2016. "Effect of nano vacuum insulation panel and nanogel glazing on the energy performance of office building," Applied Energy, Elsevier, vol. 173(C), pages 141-151.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7238-:d:931643. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.