IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i10p3570-d814845.html
   My bibliography  Save this article

Optimal Balance between Heating, Cooling and Environmental Impacts: A Method for Appropriate Assessment of Building Envelope’s U-Value

Author

Listed:
  • Safieddine Ounis

    (LACOMOFA Laboratory, Department of Architecture, Mohamed Khider University of Biskra, BP 145 RP, Biskra 07000, Algeria
    Architecture, Built Environment and Construction Engineering Department, Politecnico di Milano, Via Ponzio 31, 20133 Milano, Italy)

  • Niccolò Aste

    (Architecture, Built Environment and Construction Engineering Department, Politecnico di Milano, Via Ponzio 31, 20133 Milano, Italy)

  • Federico M. Butera

    (Architecture, Built Environment and Construction Engineering Department, Politecnico di Milano, Via Ponzio 31, 20133 Milano, Italy)

  • Claudio Del Pero

    (Architecture, Built Environment and Construction Engineering Department, Politecnico di Milano, Via Ponzio 31, 20133 Milano, Italy)

  • Fabrizio Leonforte

    (Architecture, Built Environment and Construction Engineering Department, Politecnico di Milano, Via Ponzio 31, 20133 Milano, Italy)

  • Rajendra S. Adhikari

    (Architecture, Built Environment and Construction Engineering Department, Politecnico di Milano, Via Ponzio 31, 20133 Milano, Italy)

Abstract

In Europe, the recent application of regulations oriented to zero-energy buildings and climate neutrality in 2050 has led to a reduction in energy consumption for heating and cooling in the construction sector. The thermal insulation of the building envelope plays a key role in this process and the requirements about the maximum allowable thermal transmittance are defined by country-specific guidelines. Typically, high insulation values provide low energy consumption for heating; however, they may also entail a risk of overheating in summer period and thus negatively affect the overall performance of the building. In addition, the embodied energy and related emissions caused by the manufacturing and transportation processes of thermal insulation cannot be further neglected in the evaluation of the best optimal solution. Therefore, this paper aims to evaluate the influence in terms of embodied and operational energy of various walls’ thermal insulation thicknesses on residential buildings in Europe. To this end, the EnergyPlus engine was used for the energy simulation within the Ladybug and Honeybee tools, by parametrically conducting multiple iterations; 53 variations of external wall U-value, considering high- and low-thermal-mass scenarios, were simulated for 100 representative cities of the European context, using a typical multifamily building as a reference. The results demonstrate that massive walls generally perform better than lightweight structures and the best solution in terms of energy varies according to each climate. Accordingly, the wall’s thermal transmittance for the samples of Oslo, Bordeaux, Rome and Almeria representative of the Continental, oceanic temperate, Mediterranean, and hot, semi-arid climates were, respectively: 0.12, 0.26, 0.42, and 0.64 W/m 2 K. The optimal solutions are graphically reported on the map of Europe according to specific climatic features, providing a guidance for new constructions and building retrofit.

Suggested Citation

  • Safieddine Ounis & Niccolò Aste & Federico M. Butera & Claudio Del Pero & Fabrizio Leonforte & Rajendra S. Adhikari, 2022. "Optimal Balance between Heating, Cooling and Environmental Impacts: A Method for Appropriate Assessment of Building Envelope’s U-Value," Energies, MDPI, vol. 15(10), pages 1-17, May.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3570-:d:814845
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/10/3570/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/10/3570/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aste, Niccolò & Leonforte, Fabrizio & Manfren, Massimiliano & Mazzon, Manlio, 2015. "Thermal inertia and energy efficiency – Parametric simulation assessment on a calibrated case study," Applied Energy, Elsevier, vol. 145(C), pages 111-123.
    2. Sierra-Pérez, Jorge & Rodríguez-Soria, Beatriz & Boschmonart-Rives, Jesús & Gabarrell, Xavier, 2018. "Integrated life cycle assessment and thermodynamic simulation of a public building’s envelope renovation: Conventional vs. Passivhaus proposal," Applied Energy, Elsevier, vol. 212(C), pages 1510-1521.
    3. Shadram, Farshid & Bhattacharjee, Shimantika & Lidelöw, Sofia & Mukkavaara, Jani & Olofsson, Thomas, 2020. "Exploring the trade-off in life cycle energy of building retrofit through optimization," Applied Energy, Elsevier, vol. 269(C).
    4. Ainur Tukhtamisheva & Dinar Adilova & Karolis Banionis & Aurelija Levinskytė & Raimondas Bliūdžius, 2020. "Optimization of the Thermal Insulation Level of Residential Buildings in the Almaty Region of Kazakhstan," Energies, MDPI, vol. 13(18), pages 1-16, September.
    5. Maria Anna Cusenza & Teresa Maria Gulotta & Marina Mistretta & Maurizio Cellura, 2021. "Life Cycle Energy and Environmental Assessment of the Thermal Insulation Improvement in Residential Buildings," Energies, MDPI, vol. 14(12), pages 1-21, June.
    6. Matteo Rivoire & Alessandro Casasso & Bruno Piga & Rajandrea Sethi, 2018. "Assessment of Energetic, Economic and Environmental Performance of Ground-Coupled Heat Pumps," Energies, MDPI, vol. 11(8), pages 1-23, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu Cao & Liyan Huang & Nur Mardhiyah Aziz & Syahrul Nizam Kamaruzzaman, 2022. "Building Information Modelling (BIM) Capabilities in the Design and Planning of Rural Settlements in China: A Systematic Review," Land, MDPI, vol. 11(10), pages 1-34, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bruno, Roberto & Bevilacqua, Piero & Cuconati, Teresa & Arcuri, Natale, 2019. "Energy evaluations of an innovative multi-storey wooden near Zero Energy Building designed for Mediterranean areas," Applied Energy, Elsevier, vol. 238(C), pages 929-941.
    2. Ascione, Fabrizio & De Masi, Rosa Francesca & de Rossi, Filippo & Ruggiero, Silvia & Vanoli, Giuseppe Peter, 2016. "Optimization of building envelope design for nZEBs in Mediterranean climate: Performance analysis of residential case study," Applied Energy, Elsevier, vol. 183(C), pages 938-957.
    3. Gourlis, Georgios & Kovacic, Iva, 2016. "A study on building performance analysis for energy retrofit of existing industrial facilities," Applied Energy, Elsevier, vol. 184(C), pages 1389-1399.
    4. Claudia Naldi & Enzo Zanchini, 2019. "Full-Time-Scale Fluid-to-Ground Thermal Response of a Borefield with Uniform Fluid Temperature," Energies, MDPI, vol. 12(19), pages 1-18, September.
    5. Rafał Figaj & Maciej Żołądek & Wojciech Goryl, 2020. "Dynamic Simulation and Energy Economic Analysis of a Household Hybrid Ground-Solar-Wind System Using TRNSYS Software," Energies, MDPI, vol. 13(14), pages 1-27, July.
    6. Tori, Felipe & Bustamante, Waldo & Vera, Sergio, 2022. "Analysis of Net Zero Energy Buildings public policies at the residential building sector: A comparison between Chile and selected countries," Energy Policy, Elsevier, vol. 161(C).
    7. Fischer, Robert & Toffolo, Andrea, 2022. "Is total system cost minimization fair to all the actors of an energy system? Not according to game theory," Energy, Elsevier, vol. 239(PC).
    8. David Božiček & Roman Kunič & Aleš Krainer & Uroš Stritih & Mateja Dovjak, 2023. "Mutual Influence of External Wall Thermal Transmittance, Thermal Inertia, and Room Orientation on Office Thermal Comfort and Energy Demand," Energies, MDPI, vol. 16(8), pages 1-29, April.
    9. Kaiser Ahmed & Jevgeni Fadejev & Jarek Kurnitski, 2019. "Modeling an Alternate Operational Ground Source Heat Pump for Combined Space Heating and Domestic Hot Water Power Sizing," Energies, MDPI, vol. 12(11), pages 1-26, June.
    10. Tronchin, Lamberto & Manfren, Massimiliano & James, Patrick AB., 2018. "Linking design and operation performance analysis through model calibration: Parametric assessment on a Passive House building," Energy, Elsevier, vol. 165(PA), pages 26-40.
    11. Rachana Vidhi, 2018. "A Review of Underground Soil and Night Sky as Passive Heat Sink: Design Configurations and Models," Energies, MDPI, vol. 11(11), pages 1-24, October.
    12. Aleksandra Szulc-Wrońska & Barbara Tomaszewska, 2020. "Low Enthalpy Geothermal Resources for Local Sustainable Development: A Case Study in Poland," Energies, MDPI, vol. 13(19), pages 1-20, September.
    13. Johan Claesson & Saqib Javed, 2020. "Explicit Multipole Formula for the Local Thermal Resistance in an Energy Pile—The Line-Source Approximation," Energies, MDPI, vol. 13(20), pages 1-24, October.
    14. Nicola Bartolini & Alessandro Casasso & Carlo Bianco & Rajandrea Sethi, 2020. "Environmental and Economic Impact of the Antifreeze Agents in Geothermal Heat Exchangers," Energies, MDPI, vol. 13(21), pages 1-18, October.
    15. María Beatriz Piderit & Franklin Vivanco & Geoffrey van Moeseke & Shady Attia, 2019. "Net Zero Buildings—A Framework for an Integrated Policy in Chile," Sustainability, MDPI, vol. 11(5), pages 1-18, March.
    16. Kumar, Dileep & Alam, Morshed & Zou, Patrick X.W. & Sanjayan, Jay G. & Memon, Rizwan Ahmed, 2020. "Comparative analysis of building insulation material properties and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    17. Lydon, G.P. & Hofer, J. & Svetozarevic, B. & Nagy, Z. & Schlueter, A., 2017. "Coupling energy systems with lightweight structures for a net plus energy building," Applied Energy, Elsevier, vol. 189(C), pages 310-326.
    18. Maciej Milanowski & Antonio Cazorla-Marín & Carla Montagud-Montalvá, 2022. "Energy Analysis and Cost-Effective Design Solutions for a Dual-Source Heat Pump System in Representative Climates in Europe," Energies, MDPI, vol. 15(22), pages 1-30, November.
    19. de Rubeis, Tullio & Nardi, Iole & Ambrosini, Dario & Paoletti, Domenica, 2018. "Is a self-sufficient building energy efficient? Lesson learned from a case study in Mediterranean climate," Applied Energy, Elsevier, vol. 218(C), pages 131-145.
    20. Nuno Simões & Joana Prata & António Tadeu, 2019. "3D Dynamic Simulation of Heat Conduction through a Building Corner Using a BEM Model in the Frequency Domain," Energies, MDPI, vol. 12(23), pages 1-27, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3570-:d:814845. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.