IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i10p3500-d812591.html
   My bibliography  Save this article

Study on the Optimal Dispatching Strategy of a Combined Cooling, Heating and Electric Power System Based on Demand Response

Author

Listed:
  • Ye Zhao

    (School of Electrical and Electronic Engineering, Shandong University of Technology, Zibo 255000, China)

  • Zhenhai Dou

    (School of Electrical and Electronic Engineering, Shandong University of Technology, Zibo 255000, China)

  • Zexu Yu

    (School of Electrical and Electronic Engineering, Shandong University of Technology, Zibo 255000, China)

  • Ruishuo Xie

    (School of Electrical and Electronic Engineering, Shandong University of Technology, Zibo 255000, China)

  • Mengmeng Qiao

    (School of Electrical and Electronic Engineering, Shandong University of Technology, Zibo 255000, China)

  • Yuanyuan Wang

    (School of Electrical and Electronic Engineering, Shandong University of Technology, Zibo 255000, China)

  • Lianxin Liu

    (School of Electrical and Electronic Engineering, Shandong University of Technology, Zibo 255000, China)

Abstract

This paper proposes a combined cooling, heating and electric power (CCHP) system based on demand side response. In order to improve the economy of the system, a two-stage optimal scheduling scheme is proposed with the goal of minimizing the total operating cost of the system and maximizing user satisfaction. The optimal operation of the system was divided into two optimization problems, including the demand side and the supply side. In the first stage, combined with user satisfaction, from the new point of view that users are prone to excessive behavior due to time-of-use electricity prices, the cooling, heating and power load curves are optimized. In the second stage, an economic dispatch model that includes operating costs in terms of energy, maintenance and environment is established. An improved artificial bee colony (IABC) algorithm is used to solve the optimal energy production scheme based on the demand curves optimized in the first stage. Case studies are conducted to verify the efficiency of the proposed method. Compared with the CCHP system that does not consider demand response, this method reduced operation cost on typical days in summer and winter by 5.20% and 5.76%, respectively.

Suggested Citation

  • Ye Zhao & Zhenhai Dou & Zexu Yu & Ruishuo Xie & Mengmeng Qiao & Yuanyuan Wang & Lianxin Liu, 2022. "Study on the Optimal Dispatching Strategy of a Combined Cooling, Heating and Electric Power System Based on Demand Response," Energies, MDPI, vol. 15(10), pages 1-18, May.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3500-:d:812591
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/10/3500/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/10/3500/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cui, Qiong & Ma, Peipei & Huang, Lei & Shu, Jie & Luv, Jie & Lu, Lin, 2020. "Effect of device models on the multiobjective optimal operation of CCHP microgrids considering shiftable loads," Applied Energy, Elsevier, vol. 275(C).
    2. Li, Yanbin & Zhang, Feng & Li, Yun & Wang, Yuwei, 2021. "An improved two-stage robust optimization model for CCHP-P2G microgrid system considering multi-energy operation under wind power outputs uncertainties," Energy, Elsevier, vol. 223(C).
    3. Liu, Zuming & Zhao, Yingru & Wang, Xiaonan, 2020. "Long-term economic planning of combined cooling heating and power systems considering energy storage and demand response," Applied Energy, Elsevier, vol. 279(C).
    4. Wang, Jianxiao & Zhong, Haiwang & Ma, Ziming & Xia, Qing & Kang, Chongqing, 2017. "Review and prospect of integrated demand response in the multi-energy system," Applied Energy, Elsevier, vol. 202(C), pages 772-782.
    5. Gao, Lei & Hwang, Yunho & Cao, Tao, 2019. "An overview of optimization technologies applied in combined cooling, heating and power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    6. Wu, Chenyu & Gu, Wei & Xu, Yinliang & Jiang, Ping & Lu, Shuai & Zhao, Bo, 2018. "Bi-level optimization model for integrated energy system considering the thermal comfort of heat customers," Applied Energy, Elsevier, vol. 232(C), pages 607-616.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fan Li & Jingxi Su & Bo Sun, 2023. "An Optimal Scheduling Method for an Integrated Energy System Based on an Improved k-Means Clustering Algorithm," Energies, MDPI, vol. 16(9), pages 1-22, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Huiru & Li, Bingkang & Lu, Hao & Wang, Xuejie & Li, Hongze & Guo, Sen & Xue, Wanlei & Wang, Yuwei, 2022. "Economy-environment-energy performance evaluation of CCHP microgrid system: A hybrid multi-criteria decision-making method," Energy, Elsevier, vol. 240(C).
    2. Li, Yang & Wang, Bin & Yang, Zhen & Li, Jiazheng & Chen, Chen, 2022. "Hierarchical stochastic scheduling of multi-community integrated energy systems in uncertain environments via Stackelberg game," Applied Energy, Elsevier, vol. 308(C).
    3. Xu, Qingyang & Sun, Feihu & Cai, Qiran & Liu, Li-Jing & Zhang, Kun & Liang, Qiao-Mei, 2022. "Assessment of the influence of demand-side responses on high-proportion renewable energy system: An evidence of Qinghai, China," Renewable Energy, Elsevier, vol. 190(C), pages 945-958.
    4. Yuan, Yu & Bai, Zhang & Zhou, Shengdong & Zheng, Bo & Hu, Wenxin, 2022. "Potential of applying the thermochemical recuperation in combined cooling, heating and power generation: Flexible demand response characteristics," Applied Energy, Elsevier, vol. 325(C).
    5. Ding, Jianyong & Gao, Ciwei & Song, Meng & Yan, Xingyu & Chen, Tao, 2022. "Bi-level optimal scheduling of virtual energy station based on equal exergy replacement mechanism," Applied Energy, Elsevier, vol. 327(C).
    6. Qin, Chun & Zhao, Jun & Chen, Long & Liu, Ying & Wang, Wei, 2022. "An adaptive piecewise linearized weighted directed graph for the modeling and operational optimization of integrated energy systems," Energy, Elsevier, vol. 244(PA).
    7. Deng, Yan & Zeng, Rong & Liu, Yicai, 2022. "A novel off-design model to optimize combined cooling, heating and power system with hybrid chillers for different operation strategies," Energy, Elsevier, vol. 239(PB).
    8. Jie, Pengfei & Li, Zhe & Ren, Yanli & Wei, Fengjun, 2023. "Economy-energy-environment optimization of biomass gasification CCHP system integrated with ground source heat pump," Energy, Elsevier, vol. 277(C).
    9. Siqin, Zhuoya & Niu, DongXiao & Wang, Xuejie & Zhen, Hao & Li, MingYu & Wang, Jingbo, 2022. "A two-stage distributionally robust optimization model for P2G-CCHP microgrid considering uncertainty and carbon emission," Energy, Elsevier, vol. 260(C).
    10. Zhang, Lizhi & Kuang, Jiyuan & Sun, Bo & Li, Fan & Zhang, Chenghui, 2020. "A two-stage operation optimization method of integrated energy systems with demand response and energy storage," Energy, Elsevier, vol. 208(C).
    11. Xiao Gong & Fan Li & Bo Sun & Dong Liu, 2020. "Collaborative Optimization of Multi-Energy Complementary Combined Cooling, Heating, and Power Systems Considering Schedulable Loads," Energies, MDPI, vol. 13(4), pages 1-17, February.
    12. Chen, Ke & Pan, Ming, 2021. "Operation optimization of combined cooling, heating, and power superstructure system for satisfying demand fluctuation," Energy, Elsevier, vol. 237(C).
    13. Ahmadi, Seyed Ehsan & Sadeghi, Delnia & Marzband, Mousa & Abusorrah, Abdullah & Sedraoui, Khaled, 2022. "Decentralized bi-level stochastic optimization approach for multi-agent multi-energy networked micro-grids with multi-energy storage technologies," Energy, Elsevier, vol. 245(C).
    14. Tsoumalis, Georgios I. & Bampos, Zafeirios N. & Biskas, Pandelis N. & Keranidis, Stratos D. & Symeonidis, Polychronis A. & Voulgarakis, Dimitrios K., 2022. "A novel system for providing explicit demand response from domestic natural gas boilers," Applied Energy, Elsevier, vol. 317(C).
    15. Gao, Yang & Ai, Qian & He, Xing & Fan, Songli, 2023. "Coordination for regional integrated energy system through target cascade optimization," Energy, Elsevier, vol. 276(C).
    16. Wang, Yi & Qiu, Dawei & Sun, Mingyang & Strbac, Goran & Gao, Zhiwei, 2023. "Secure energy management of multi-energy microgrid: A physical-informed safe reinforcement learning approach," Applied Energy, Elsevier, vol. 335(C).
    17. Wu, Xiao & Xi, Han & Qiu, Ruohan & Lee, Kwang Y., 2023. "Low carbon optimal planning of the steel mill gas utilization system," Applied Energy, Elsevier, vol. 343(C).
    18. Peixiao Fan & Jia Hu & Song Ke & Yuxin Wen & Shaobo Yang & Jun Yang, 2022. "A Frequency–Pressure Cooperative Control Strategy of Multi-Microgrid with an Electric–Gas System Based on MADDPG," Sustainability, MDPI, vol. 14(14), pages 1-20, July.
    19. Bao, Minglei & Hui, Hengyu & Ding, Yi & Sun, Xiaocong & Zheng, Chenghang & Gao, Xiang, 2023. "An efficient framework for exploiting operational flexibility of load energy hubs in risk management of integrated electricity-gas systems," Applied Energy, Elsevier, vol. 338(C).
    20. Ma, Huan & Sun, Qinghan & Chen, Qun & Zhao, Tian & He, Kelun, 2023. "Exergy-based flexibility cost indicator and spatio-temporal coordination principle of distributed multi-energy systems," Energy, Elsevier, vol. 267(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3500-:d:812591. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.