IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i2p457-d481330.html
   My bibliography  Save this article

Design Framework of a Stand-Alone Microgrid Considering Power System Performance and Economic Efficiency

Author

Listed:
  • Hak-Ju Lee

    (Korea Electric Power Research Institute (KEPRI), 105 Munji-ro, Yuseong-gu, Daejeon 34056, Korea)

  • Ba Hau Vu

    (School of Electrical Engineering, Kookmin University, 861-1, Jeongneung-dong, Seongbuk-gu, Seoul 02707, Korea)

  • Rehman Zafar

    (School of Electrical Engineering, Kookmin University, 861-1, Jeongneung-dong, Seongbuk-gu, Seoul 02707, Korea)

  • Sung-Wook Hwang

    (Korea Electric Power Research Institute (KEPRI), 105 Munji-ro, Yuseong-gu, Daejeon 34056, Korea)

  • Il-Yop Chung

    (School of Electrical Engineering, Kookmin University, 861-1, Jeongneung-dong, Seongbuk-gu, Seoul 02707, Korea)

Abstract

Stand-alone microgrids integrating renewable energy sources have emerged as an efficient energy solution for electrifying isolated sites, such as islands and remote areas. The design of a microgrid involves various influential factors, including technological development, economic feasibility, and environmental impacts, based on the conditions and regulations of a particular site. This paper proposes a comprehensive microgrid design framework based on power system analysis and techno-economic analysis. The obtained optimal microgrid configuration satisfies both the design objective and power system performance regulations. The proposed design approach focuses on using practical data and can adapt to any microgrid design problems based on the local characteristics of a specific site. The practicality and effectiveness of the design framework are validated by applying it to the design of a stand-alone microgrid for Deokjeok Island in South Korea. The case study results justify the importance of considering site-specific characteristics and the impacts of power system conditions on the optimal microgrid design.

Suggested Citation

  • Hak-Ju Lee & Ba Hau Vu & Rehman Zafar & Sung-Wook Hwang & Il-Yop Chung, 2021. "Design Framework of a Stand-Alone Microgrid Considering Power System Performance and Economic Efficiency," Energies, MDPI, vol. 14(2), pages 1-28, January.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:2:p:457-:d:481330
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/2/457/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/2/457/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cheol-Hee Yoo & Il-Yop Chung & Hyun-Jae Yoo & Sung-Soo Hong, 2014. "A Grid Voltage Measurement Method for Wind Power Systems during Grid Fault Conditions," Energies, MDPI, vol. 7(11), pages 1-14, November.
    2. Hirsch, Adam & Parag, Yael & Guerrero, Josep, 2018. "Microgrids: A review of technologies, key drivers, and outstanding issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 402-411.
    3. Athila Quaresma Santos & Zheng Ma & Casper Gellert Olsen & Bo Nørregaard Jørgensen, 2018. "Framework for Microgrid Design Using Social, Economic, and Technical Analysis," Energies, MDPI, vol. 11(10), pages 1-22, October.
    4. Lateef Onaadepo Ibrahim & Youl-Moon Sung & Doosoo Hyun & Minhan Yoon, 2020. "A Feasibility Study of Frequency Regulation Energy Storage System Installation in a Power Plant," Energies, MDPI, vol. 13(20), pages 1-13, October.
    5. Miguel Carpintero-Rentería & David Santos-Martín & Josep M. Guerrero, 2019. "Microgrids Literature Review through a Layers Structure," Energies, MDPI, vol. 12(22), pages 1-22, November.
    6. Husein, Munir & Chung, Il-Yop, 2018. "Optimal design and financial feasibility of a university campus microgrid considering renewable energy incentives," Applied Energy, Elsevier, vol. 225(C), pages 273-289.
    7. Zhao, Bo & Zhang, Xuesong & Li, Peng & Wang, Ke & Xue, Meidong & Wang, Caisheng, 2014. "Optimal sizing, operating strategy and operational experience of a stand-alone microgrid on Dongfushan Island," Applied Energy, Elsevier, vol. 113(C), pages 1656-1666.
    8. Stadler, M. & Groissböck, M. & Cardoso, G. & Marnay, C., 2014. "Optimizing Distributed Energy Resources and building retrofits with the strategic DER-CAModel," Applied Energy, Elsevier, vol. 132(C), pages 557-567.
    9. Jones, Rory V. & Fuertes, Alba & Lomas, Kevin J., 2015. "The socio-economic, dwelling and appliance related factors affecting electricity consumption in domestic buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 901-917.
    10. Andrea Bonfiglio & Massimo Brignone & Marco Invernizzi & Alessandro Labella & Daniele Mestriner & Renato Procopio, 2017. "A Simplified Microgrid Model for the Validation of Islanded Control Logics," Energies, MDPI, vol. 10(8), pages 1-28, August.
    11. Gang He & Jiang Lin & Froylan Sifuentes & Xu Liu & Nikit Abhyankar & Amol Phadke, 2020. "Rapid cost decrease of renewables and storage accelerates the decarbonization of China’s power system," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    12. Cheol-Hee Yoo & Il-Yop Chung & Hak-Ju Lee & Sung-Soo Hong, 2013. "Intelligent Control of Battery Energy Storage for Multi-Agent Based Microgrid Energy Management," Energies, MDPI, vol. 6(10), pages 1-24, September.
    13. Hafez, Omar & Bhattacharya, Kankar, 2012. "Optimal planning and design of a renewable energy based supply system for microgrids," Renewable Energy, Elsevier, vol. 45(C), pages 7-15.
    14. Neves, Diana & Silva, Carlos A. & Connors, Stephen, 2014. "Design and implementation of hybrid renewable energy systems on micro-communities: A review on case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 935-946.
    15. Vu Ba Hau & Munir Husein & Il-Yop Chung & Dong-Jun Won & William Torre & Truong Nguyen, 2018. "Analyzing the Impact of Renewable Energy Incentives and Parameter Uncertainties on Financial Feasibility of a Campus Microgrid," Energies, MDPI, vol. 11(9), pages 1-24, September.
    16. Jung, Jaesung & Villaran, Michael, 2017. "Optimal planning and design of hybrid renewable energy systems for microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 180-191.
    17. Senjyu, Tomonobu & Hayashi, Daisuke & Yona, Atsushi & Urasaki, Naomitsu & Funabashi, Toshihisa, 2007. "Optimal configuration of power generating systems in isolated island with renewable energy," Renewable Energy, Elsevier, vol. 32(11), pages 1917-1933.
    18. Sachs, Julia & Sawodny, Oliver, 2016. "Multi-objective three stage design optimization for island microgrids," Applied Energy, Elsevier, vol. 165(C), pages 789-800.
    19. Bahramara, S. & Moghaddam, M. Parsa & Haghifam, M.R., 2016. "Optimal planning of hybrid renewable energy systems using HOMER: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 609-620.
    20. Adefarati, T. & Bansal, R.C., 2019. "Reliability, economic and environmental analysis of a microgrid system in the presence of renewable energy resources," Applied Energy, Elsevier, vol. 236(C), pages 1089-1114.
    21. Pecenak, Zachary K. & Stadler, Michael & Mathiesen, Patrick & Fahy, Kelsey & Kleissl, Jan, 2020. "Robust design of microgrids using a hybrid minimum investment optimization," Applied Energy, Elsevier, vol. 276(C).
    22. Cao, Tao & Hwang, Yunho & Radermacher, Reinhard, 2017. "Development of an optimization based design framework for microgrid energy systems," Energy, Elsevier, vol. 140(P1), pages 340-351.
    23. Yuichiro Yoshida & Hooman Farzaneh, 2020. "Optimal Design of a Stand-Alone Residential Hybrid Microgrid System for Enhancing Renewable Energy Deployment in Japan," Energies, MDPI, vol. 13(7), pages 1-18, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Md Masud Rana & Mohamed Atef & Md Rasel Sarkar & Moslem Uddin & GM Shafiullah, 2022. "A Review on Peak Load Shaving in Microgrid—Potential Benefits, Challenges, and Future Trend," Energies, MDPI, vol. 15(6), pages 1-17, March.
    2. Vu, Ba Hau & Chung, Il-Yop, 2022. "Optimal generation scheduling and operating reserve management for PV generation using RNN-based forecasting models for stand-alone microgrids," Renewable Energy, Elsevier, vol. 195(C), pages 1137-1154.
    3. Luis Arribas & Yolanda Lechón & Alberto Perula & Javier Domínguez & Manuel Ferres & Jorge Navarro & Luis F. Zarzalejo & Carolina García Barquero & Ignacio Cruz, 2021. "Review of Data and Data Sources for the Assessment of the Potential of Utility-Scale Hybrid Wind–Solar PV Power Plants Deployment, under a Microgrid Scope," Energies, MDPI, vol. 14(21), pages 1-23, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vu, Ba Hau & Chung, Il-Yop, 2022. "Optimal generation scheduling and operating reserve management for PV generation using RNN-based forecasting models for stand-alone microgrids," Renewable Energy, Elsevier, vol. 195(C), pages 1137-1154.
    2. Pablo Benalcazar & Adam Suski & Jacek Kamiński, 2020. "The Effects of Capital and Energy Subsidies on the Optimal Design of Microgrid Systems," Energies, MDPI, vol. 13(4), pages 1-23, February.
    3. Fontenot, Hannah & Dong, Bing, 2019. "Modeling and control of building-integrated microgrids for optimal energy management – A review," Applied Energy, Elsevier, vol. 254(C).
    4. Azimian, Mahdi & Amir, Vahid & Javadi, Saeid, 2020. "Economic and Environmental Policy Analysis for Emission-Neutral Multi-Carrier Microgrid Deployment," Applied Energy, Elsevier, vol. 277(C).
    5. Mohseni, Soheil & Brent, Alan C. & Kelly, Scott & Browne, Will N., 2022. "Demand response-integrated investment and operational planning of renewable and sustainable energy systems considering forecast uncertainties: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    6. Athila Quaresma Santos & Zheng Ma & Casper Gellert Olsen & Bo Nørregaard Jørgensen, 2018. "Framework for Microgrid Design Using Social, Economic, and Technical Analysis," Energies, MDPI, vol. 11(10), pages 1-22, October.
    7. Kourgiozou, Vasiliki & Commin, Andrew & Dowson, Mark & Rovas, Dimitrios & Mumovic, Dejan, 2021. "Scalable pathways to net zero carbon in the UK higher education sector: A systematic review of smart energy systems in university campuses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    8. Antoine Boche & Clément Foucher & Luiz Fernando Lavado Villa, 2022. "Understanding Microgrid Sustainability: A Systemic and Comprehensive Review," Energies, MDPI, vol. 15(8), pages 1-29, April.
    9. Rahmat Khezri & Amin Mahmoudi & Hirohisa Aki & S. M. Muyeen, 2021. "Optimal Planning of Remote Area Electricity Supply Systems: Comprehensive Review, Recent Developments and Future Scopes," Energies, MDPI, vol. 14(18), pages 1-29, September.
    10. Jung, Jaesung & Villaran, Michael, 2017. "Optimal planning and design of hybrid renewable energy systems for microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 180-191.
    11. Husein, Munir & Chung, Il-Yop, 2018. "Optimal design and financial feasibility of a university campus microgrid considering renewable energy incentives," Applied Energy, Elsevier, vol. 225(C), pages 273-289.
    12. Jihed Hmad & Azeddine Houari & Allal El Moubarek Bouzid & Abdelhakim Saim & Hafedh Trabelsi, 2023. "A Review on Mode Transition Strategies between Grid-Connected and Standalone Operation of Voltage Source Inverters-Based Microgrids," Energies, MDPI, vol. 16(13), pages 1-41, June.
    13. Matija Kostelac & Lin Herenčić & Tomislav Capuder, 2022. "Planning and Operational Aspects of Individual and Clustered Multi-Energy Microgrid Options," Energies, MDPI, vol. 15(4), pages 1-17, February.
    14. Mohseni, Soheil & Brent, Alan C. & Burmester, Daniel, 2020. "A comparison of metaheuristics for the optimal capacity planning of an isolated, battery-less, hydrogen-based micro-grid," Applied Energy, Elsevier, vol. 259(C).
    15. Tsao, Yu-Chung & Thanh, Vo-Van, 2021. "Toward sustainable microgrids with blockchain technology-based peer-to-peer energy trading mechanism: A fuzzy meta-heuristic approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    16. Mazzola, Simone & Astolfi, Marco & Macchi, Ennio, 2015. "A detailed model for the optimal management of a multigood microgrid," Applied Energy, Elsevier, vol. 154(C), pages 862-873.
    17. William López-Castrillón & Héctor H. Sepúlveda & Cristian Mattar, 2021. "Off-Grid Hybrid Electrical Generation Systems in Remote Communities: Trends and Characteristics in Sustainability Solutions," Sustainability, MDPI, vol. 13(11), pages 1-29, May.
    18. Andrea A. Eras-Almeida & Miguel A. Egido-Aguilera & Philipp Blechinger & Sarah Berendes & Estefanía Caamaño & Enrique García-Alcalde, 2020. "Decarbonizing the Galapagos Islands: Techno-Economic Perspectives for the Hybrid Renewable Mini-Grid Baltra–Santa Cruz," Sustainability, MDPI, vol. 12(6), pages 1-47, March.
    19. Balderrama, Sergio & Lombardi, Francesco & Riva, Fabio & Canedo, Walter & Colombo, Emanuela & Quoilin, Sylvain, 2019. "A two-stage linear programming optimization framework for isolated hybrid microgrids in a rural context: The case study of the “El Espino” community," Energy, Elsevier, vol. 188(C).
    20. Mayer, Martin János & Szilágyi, Artúr & Gróf, Gyula, 2020. "Environmental and economic multi-objective optimization of a household level hybrid renewable energy system by genetic algorithm," Applied Energy, Elsevier, vol. 269(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:2:p:457-:d:481330. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.