IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i22p7518-d676440.html
   My bibliography  Save this article

Numerical Simulation of Combustion and Characteristics of Fly Ash and Slag in a “V-type” Waste Incinerator

Author

Listed:
  • Zixue Luo

    (State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Wei Chen

    (State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Yue Wang

    (State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Qiang Cheng

    (State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Xiaohua Yuan

    (Grandblue Environment Co., Ltd., Foshan 528200, China)

  • Zhigang Li

    (Grandblue Environment Co., Ltd., Foshan 528200, China)

  • Junjie Yang

    (Grandblue Environment Co., Ltd., Foshan 528200, China)

Abstract

This study is focused on a “V-type” waste incinerator for municipal solid waste (MSW) combustion. Computational fluid dynamics (CFD) methods are used to study the MSW combustion process. The characteristics of fly ash and slag are analyzed by using a laser particle analyzer, scanning electron microscope, X-ray fluorescence, and X-ray diffraction. The results show that the error between the CFD simulation data and measured data is less than 10%, and the changing trend of the combustion process is well-modeled. The fly ash mainly has an irregular spherical or ellipsoid structure, whereas the slag mainly has an irregular porous structure. The main constituents of the ash and slag are CaO and SiO 2 , along with heavy metal elements such as Cu, Pb, and Cr.

Suggested Citation

  • Zixue Luo & Wei Chen & Yue Wang & Qiang Cheng & Xiaohua Yuan & Zhigang Li & Junjie Yang, 2021. "Numerical Simulation of Combustion and Characteristics of Fly Ash and Slag in a “V-type” Waste Incinerator," Energies, MDPI, vol. 14(22), pages 1-12, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:22:p:7518-:d:676440
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/22/7518/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/22/7518/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Karim, Md Rezwanul & Bhuiyan, Arafat Ahmed & Sarhan, Abd Alhamid Rafea & Naser, Jamal, 2020. "CFD simulation of biomass thermal conversion under air/oxy-fuel conditions in a reciprocating grate boiler," Renewable Energy, Elsevier, vol. 146(C), pages 1416-1428.
    2. Altaf Hussain Kanhar & Shaoqing Chen & Fei Wang, 2020. "Incineration Fly Ash and Its Treatment to Possible Utilization: A Review," Energies, MDPI, vol. 13(24), pages 1-35, December.
    3. Marta Wiśniewska & Andrzej Kulig & Krystyna Lelicińska-Serafin, 2021. "Odour Nuisance at Municipal Waste Biogas Plants and the Effect of Feedstock Modification on the Circular Economy—A Review," Energies, MDPI, vol. 14(20), pages 1-22, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yongqi Liang & Jian Tang & Heng Xia & Loai Aljerf & Bingyin Gao & Mulugeta Legesse Akele, 2023. "Three-Dimensional Numerical Modeling and Analysis for the Municipal Solid-Waste Incineration of the Grate Furnace for Particulate-Matter Generation," Sustainability, MDPI, vol. 15(16), pages 1-22, August.
    2. Ziwei Chen & Beini He & Xidong Wang, 2023. "Advanced Utilization Technologies of Secondary Energy and Resources from Energy-Intensive Industries," Energies, MDPI, vol. 16(7), pages 1-3, March.
    3. Lianhong Chen & Chao Wang & Rigang Zhong & Zhuoge Li & Zheng Zhao & Ziyu Zhou, 2023. "Prediction of Main Parameters of Steam in Waste Incinerators Based on BAS-SVM," Sustainability, MDPI, vol. 15(2), pages 1-16, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amit Kumar Jaglan & Venkata Ravi Sankar Cheela & Mansi Vinaik & Brajesh Dubey, 2022. "Environmental Impact Evaluation of University Integrated Waste Management System in India Using Life Cycle Analysis," Sustainability, MDPI, vol. 14(14), pages 1-18, July.
    2. Thobile Zikhathile & Harrison Atagana & Joseph Bwapwa & David Sawtell, 2022. "A Review of the Impact That Healthcare Risk Waste Treatment Technologies Have on the Environment," IJERPH, MDPI, vol. 19(19), pages 1-18, September.
    3. Gabriele Di Giacomo, 2021. "Material and Energy Recovery from the Final Disposal of Organic Waste," Energies, MDPI, vol. 14(24), pages 1-2, December.
    4. Venkata Ravi Sankar Cheela & Michele John & Wahidul K. Biswas & Brajesh Dubey, 2021. "Environmental Impact Evaluation of Current Municipal Solid Waste Treatments in India Using Life Cycle Assessment," Energies, MDPI, vol. 14(11), pages 1-23, May.
    5. Erić, Aleksandar & Cvetinović, Dejan & Milutinović, Nada & Škobalj, Predrag & Bakić, Vukman, 2022. "Combined parametric modelling of biomass devolatilisation process," Renewable Energy, Elsevier, vol. 193(C), pages 13-22.
    6. Joanna Irena Odzijewicz & Elżbieta Wołejko & Urszula Wydro & Mariola Wasil & Agata Jabłońska-Trypuć, 2022. "Utilization of Ashes from Biomass Combustion," Energies, MDPI, vol. 15(24), pages 1-16, December.
    7. Alicja Kicińska & Grzegorz Caba, 2021. "Leaching of Chlorides, Sulphates, and Phosphates from Ashes Formed as a Result of Burning Conventional Fuels, Alternative Fuels, and Municipal Waste in Household Furnaces," Energies, MDPI, vol. 14(13), pages 1-18, June.
    8. Marta Szyba & Jerzy Mikulik, 2023. "Management of Biodegradable Waste Intended for Biogas Production in a Large City," Energies, MDPI, vol. 16(10), pages 1-19, May.
    9. Hannah Jones & Florence Saffar & Vasileios Koutsos & Dipa Ray, 2021. "Polyolefins and Polyethylene Terephthalate Package Wastes: Recycling and Use in Composites," Energies, MDPI, vol. 14(21), pages 1-43, November.
    10. Aminmahalati, Alireza & Fazlali, Alireza & Safikhani, Hamed, 2021. "Multi-objective optimization of CO boiler combustion chamber in the RFCC unit using NSGA II algorithm," Energy, Elsevier, vol. 221(C).
    11. Valentyna Stanytsina & Volodymyr Artemchuk & Olga Bogoslavska & Artur Zaporozhets & Antonina Kalinichenko & Jan Stebila & Valerii Havrysh & Dariusz Suszanowicz, 2022. "Fossil Fuel and Biofuel Boilers in Ukraine: Trends of Changes in Levelized Cost of Heat," Energies, MDPI, vol. 15(19), pages 1-18, September.
    12. Lim, Jonghun & Kim, Junghwan, 2022. "Optimizing ash deposit removal system to maximize biomass recycling as renewable energy for CO2 reduction," Renewable Energy, Elsevier, vol. 190(C), pages 1006-1017.
    13. Xia, Zihong & Long, Jisheng & Yan, Shuai & Bai, Li & Du, Hailiang & Chen, Caixia, 2021. "Two-fluid simulation of moving grate waste incinerator: Comparison of 2D and 3D bed models," Energy, Elsevier, vol. 216(C).
    14. Marcin Zieliński & Joanna Kazimierowicz & Marcin Dębowski, 2022. "Advantages and Limitations of Anaerobic Wastewater Treatment—Technological Basics, Development Directions, and Technological Innovations," Energies, MDPI, vol. 16(1), pages 1-39, December.
    15. César Álvarez-Bermúdez & Sergio Chapela & Luis G. Varela & Miguel Ángel Gómez, 2021. "CFD Simulation of an Internally Cooled Biomass Fixed-Bed Combustion Plant," Resources, MDPI, vol. 10(8), pages 1-19, July.
    16. Diba, Mst Farhana & Karim, Md Rezwanul & Naser, Jamal, 2022. "CFD modelling of coal gasification in a fluidized bed with the effects of calcination under different operating conditions," Energy, Elsevier, vol. 239(PC).
    17. Marta Wiśniewska & Andrzej Kulig & Krystyna Lelicińska-Serafin, 2022. "Odour Load of Selected Elements of the Technological Line at a Municipal Waste Biogas Plant," Energies, MDPI, vol. 15(7), pages 1-19, March.
    18. Mohammad Ghorbani & Petr Konvalina & Anna Walkiewicz & Reinhard W. Neugschwandtner & Marek Kopecký & Kazem Zamanian & Wei-Hsin Chen & Daniel Bucur, 2022. "Feasibility of Biochar Derived from Sewage Sludge to Promote Sustainable Agriculture and Mitigate GHG Emissions—A Review," IJERPH, MDPI, vol. 19(19), pages 1-23, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:22:p:7518-:d:676440. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.