IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i21p7308-d671782.html
   My bibliography  Save this article

Numerical Investigation on the Flame Structure and CO/NO Formations of the Laminar Premixed Biogas–Hydrogen Impinging Flame in the Wall Vicinity

Author

Listed:
  • Zhilong Wei

    (Mechanical and Electrical Engineering College, Hainan University, Haikou 570228, China)

  • Lei Wang

    (Mechanical and Electrical Engineering College, Hainan University, Haikou 570228, China)

  • Hu Liu

    (Mechanical and Electrical Engineering College, Hainan University, Haikou 570228, China)

  • Zihao Liu

    (Mechanical and Electrical Engineering College, Hainan University, Haikou 570228, China)

  • Haisheng Zhen

    (Mechanical and Electrical Engineering College, Hainan University, Haikou 570228, China)

Abstract

The near-wall flame structure and pollutant emissions of the laminar premixed biogas-hydrogen impinging flame were simulated with a detailed chemical mechanism. The spatial distributions of the temperature, critical species, and pollutant emissions near the wall of the laminar premixed biogas–hydrogen impinging flame were obtained and investigated quantitatively. The results show that the cold wall can influence the premixed combustion process in the flame front, which is close to the wall but does not touch the wall, and results in the obviously declined concentrations of OH, H, and O radicals in the premixed combustion zone. After flame quenching, a high CO concentration can be observed near the wall at equivalence ratios ( φ ) of both 0.8 and 1.2. Compared with that at φ = 1.0, more unburned fuel is allowed to pass through the quenching zone and generate CO after flame quenching near the wall thanks to the suppressed fuel consumption rate near the wall and the excess fuel in the unburned gases at φ = 0.8 and 1.2, respectively. By isolating the formation routes of NO production, it is found that the fast-rising trend of NO concentration near the wall in the post flame region at φ = 0.8 is attributed to the NO transportation from the NNH route primarily, while the prompt NO production accounts for more than 90% of NO generation in the wall vicinity at φ = 1.2. It is thus known that, thanks to the effectively increased surface-to-volume ratio, the premixed combustion process in the downsized chamber will be affected more easily by the amplified cooling effects of the cold wall, which will contribute to the declined combustion efficiency, increased CO emission, and improved prompt NO production.

Suggested Citation

  • Zhilong Wei & Lei Wang & Hu Liu & Zihao Liu & Haisheng Zhen, 2021. "Numerical Investigation on the Flame Structure and CO/NO Formations of the Laminar Premixed Biogas–Hydrogen Impinging Flame in the Wall Vicinity," Energies, MDPI, vol. 14(21), pages 1-16, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7308-:d:671782
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/21/7308/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/21/7308/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lim, Cheolsoo & Kim, Daigon & Song, Changkeun & Kim, Jeongsoo & Han, Jinseok & Cha, Jun-Seok, 2015. "Performance and emission characteristics of a vehicle fueled with enriched biogas and natural gases," Applied Energy, Elsevier, vol. 139(C), pages 17-29.
    2. Kiani, Mehrdad & Houshfar, Ehsan & Ashjaee, Mehdi, 2019. "Experimental investigations on the flame structure and temperature field of landfill gas in impinging slot burners," Energy, Elsevier, vol. 170(C), pages 507-520.
    3. Hakawati, Rawan & Smyth, Beatrice M. & McCullough, Geoffrey & De Rosa, Fabio & Rooney, David, 2017. "What is the most energy efficient route for biogas utilization: Heat, electricity or transport?," Applied Energy, Elsevier, vol. 206(C), pages 1076-1087.
    4. Wei, Zhilong & Zhen, Haisheng & Leung, Chunwah & Cheung, Chunshun & Huang, Zuohua, 2020. "Effects of unburned gases velocity on the CO/NO2/NOx formations and overall emissions of laminar premixed biogas-hydrogen impinging flame," Energy, Elsevier, vol. 196(C).
    5. Tang, Aikun & Deng, Jiang & Cai, Tao & Xu, Yiming & Pan, Jianfeng, 2017. "Combustion characteristics of premixed propane/hydrogen/air in the micro-planar combustor with different channel-heights," Applied Energy, Elsevier, vol. 203(C), pages 635-642.
    6. Divya, D. & Gopinath, L.R. & Merlin Christy, P., 2015. "A review on current aspects and diverse prospects for enhancing biogas production in sustainable means," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 690-699.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei, Zhilong & Zhen, Haisheng & Leung, Chunwah & Cheung, Chunshun & Huang, Zuohua, 2020. "Effects of unburned gases velocity on the CO/NO2/NOx formations and overall emissions of laminar premixed biogas-hydrogen impinging flame," Energy, Elsevier, vol. 196(C).
    2. Khan, Muhammad Usman & Lee, Jonathan Tian En & Bashir, Muhammad Aamir & Dissanayake, Pavani Dulanja & Ok, Yong Sik & Tong, Yen Wah & Shariati, Mohammad Ali & Wu, Sarah & Ahring, Birgitte Kiaer, 2021. "Current status of biogas upgrading for direct biomethane use: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    3. Abdeshahian, Peyman & Lim, Jeng Shiun & Ho, Wai Shin & Hashim, Haslenda & Lee, Chew Tin, 2016. "Potential of biogas production from farm animal waste in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 714-723.
    4. Roopnarain, Ashira & Rama, Haripriya & Ndaba, Busiswa & Bello-Akinosho, Maryam & Bamuza-Pemu, Emomotimi & Adeleke, Rasheed, 2021. "Unravelling the anaerobic digestion ‘black box’: Biotechnological approaches for process optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    5. Peng, Qingguo & Xie, Bo & Yang, Wenming & Tang, Shihao & Li, Zhenwei & Zhou, Peng & Luo, Ningkang, 2021. "Effects of porosity and multilayers of porous medium on the hydrogen-fueled combustion and micro-thermophotovoltaic," Renewable Energy, Elsevier, vol. 174(C), pages 391-402.
    6. Zhang, Xiaolei & Hu, Longhua & Delichatsios, Michael A. & Zhang, Jianping, 2019. "Experimental study on flame morphologic characteristics of wall attached non-premixed buoyancy driven turbulent flames," Applied Energy, Elsevier, vol. 254(C).
    7. Gao, Yuchen & Jiang, Jianguo & Meng, Yuan & Aihemaiti, Aikelaimu & Ju, Tongyao & Chen, Xuejing & Yan, Feng, 2020. "A novel nickel catalyst supported on activated coal fly ash for syngas production via biogas dry reforming," Renewable Energy, Elsevier, vol. 149(C), pages 786-793.
    8. Korberg, Andrei David & Skov, Iva Ridjan & Mathiesen, Brian Vad, 2020. "The role of biogas and biogas-derived fuels in a 100% renewable energy system in Denmark," Energy, Elsevier, vol. 199(C).
    9. Pérez-Rodríguez, N. & García-Bernet, D. & Domínguez, J.M., 2017. "Extrusion and enzymatic hydrolysis as pretreatments on corn cob for biogas production," Renewable Energy, Elsevier, vol. 107(C), pages 597-603.
    10. Błażej Gaze & Paulina Wojtko & Bernard Knutel & Przemysław Kobel & Kinga Bobrowicz & Przemysław Bukowski & Jerzy Chojnacki & Jan Kielar, 2023. "Influence of Catalytic Additive Application on the Wood-Based Waste Combustion Process," Energies, MDPI, vol. 16(4), pages 1-13, February.
    11. Alberto Benato & Alarico Macor, 2019. "Italian Biogas Plants: Trend, Subsidies, Cost, Biogas Composition and Engine Emissions," Energies, MDPI, vol. 12(6), pages 1-31, March.
    12. Baena-Moreno, Francisco M. & Pastor-Pérez, Laura & Zhang, Zhien & Reina, T.R., 2020. "Stepping towards a low-carbon economy. Formic acid from biogas as case of study," Applied Energy, Elsevier, vol. 268(C).
    13. Peng, Qingguo & Yang, Wenming & E, Jiaqiang & Li, Shaobo & Li, Zhenwei & Xu, Hongpeng & Fu, Guang, 2021. "Effects of propane addition and burner scale on the combustion characteristics and working performance," Applied Energy, Elsevier, vol. 285(C).
    14. Roozbeh Feiz & Jonas Ammenberg & Annika Björn & Yufang Guo & Magnus Karlsson & Yonghui Liu & Yuxian Liu & Laura Shizue Moriga Masuda & Alex Enrich-Prast & Harald Rohracher & Kristina Trygg & Sepehr Sh, 2019. "Biogas Potential for Improved Sustainability in Guangzhou, China—A Study Focusing on Food Waste on Xiaoguwei Island," Sustainability, MDPI, vol. 11(6), pages 1-25, March.
    15. Apoorva Upadhyay & Andrey A. Kovalev & Elena A. Zhuravleva & Dmitriy A. Kovalev & Yuriy V. Litti & Shyam Kumar Masakapalli & Nidhi Pareek & Vivekanand Vivekanand, 2022. "Recent Development in Physical, Chemical, Biological and Hybrid Biogas Upgradation Techniques," Sustainability, MDPI, vol. 15(1), pages 1-30, December.
    16. Tang, Aikun & Cai, Tao & Deng, Jiang & Zhao, Dan & Huang, Qiuhan & Zhou, Chen, 2019. "Experimental study on flame structure transitions of premixed propane/air in micro-scale planar combustors," Energy, Elsevier, vol. 179(C), pages 558-570.
    17. Alessandro Casasso & Marta Puleo & Deborah Panepinto & Mariachiara Zanetti, 2021. "Economic Viability and Greenhouse Gas (GHG) Budget of the Biomethane Retrofit of Manure-Operated Biogas Plants: A Case Study from Piedmont, Italy," Sustainability, MDPI, vol. 13(14), pages 1-18, July.
    18. Khoshgoftar Manesh, M.H. & Rezazadeh, A. & Kabiri, S., 2020. "A feasibility study on the potential, economic, and environmental advantages of biogas production from poultry manure in Iran," Renewable Energy, Elsevier, vol. 159(C), pages 87-106.
    19. Jakub Mazurkiewicz, 2023. "The Impact of Manure Use for Energy Purposes on the Economic Balance of a Dairy Farm," Energies, MDPI, vol. 16(18), pages 1-22, September.
    20. Xie, Bo & Peng, Qingguo & E, Jiaqiang & Tu, Yaojie & Wei, Jia & Tang, Shihao & Song, Yangyang & Fu, Guang, 2022. "Effects of CO addition and multi-factors optimization on hydrogen/air combustion characteristics and thermal performance based on grey relational analysis," Energy, Elsevier, vol. 255(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7308-:d:671782. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.