IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i19p6159-d644294.html
   My bibliography  Save this article

Chemical Methods for Hydrolyzing Dairy Manure Fiber: A Concise Review

Author

Listed:
  • Noori M. Cata Saady

    (Civil Engineering Department, Memorial University of Newfoundland, St. John’s, NL A1B 3X5, Canada)

  • Fatemeh Rezaeitavabe

    (Civil Engineering Department, Memorial University of Newfoundland, St. John’s, NL A1B 3X5, Canada)

  • Juan Enrique Ruiz Espinoza

    (Faculty of Chemical Engineering, Autonomous University of Yucatan, Periférico Norte, Km. 33.5, Tablaje Catastral 13615, Col. Chuburná de Hidalgo Inn, Merida C.P. 97203, Mexico)

Abstract

This paper reviews the chemical hydrolysis processes of dairy manure fiber to make its sugar accessible to microorganisms during anaerobic digestion and identifies obstacles and opportunities. Researchers, so far, investigated acid, alkali, sulfite, and advanced oxidation processes (such as hydrogen peroxide assisted by microwave/ultrasound irradiation, conventional boiling, and wet oxidation), or their combinations. Generally, dilute acid (3–10%) is less effective than concentrated acid (12.5–75%), which decrystallizes the cellulose. Excessive alkaline may produce difficult-to-degrade oxycellulose. Therefore, multi-step acid hydrolysis (without alkaline) is preferred. Such processes yielded 84% and 80% manure-to-glucose and -xylose conversion, respectively. Acid pretreatment increases lignin concentration in the treated manure and hinders subsequent enzymatic processes but is compatible with fungal cellulolytic enzymes which favor low pH. Manure high alkalinity affects dilute acid pretreatment and lowers glucose yield. Accordingly, the ratio of manure to the chemical agent and its initial concentration, reaction temperature and duration, and manure fineness need optimization because they affect the hydrolysis rate. Optimizing these factors or combining processes should balance removing hemicellulose and/or lignin and increasing cellulose concentrations while not hindering any subsequent process. The reviewed methods are neither economical nor integratable with the on-farm anaerobic digestion. Economic analysis and energy balance should be monolithic components of the research. More research is required to assess the effects of nitrogen content on these processes, optimize it, and determine if another pretreatment is necessary.

Suggested Citation

  • Noori M. Cata Saady & Fatemeh Rezaeitavabe & Juan Enrique Ruiz Espinoza, 2021. "Chemical Methods for Hydrolyzing Dairy Manure Fiber: A Concise Review," Energies, MDPI, vol. 14(19), pages 1-15, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6159-:d:644294
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/19/6159/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/19/6159/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Batzias, F.A. & Sidiras, D.K. & Spyrou, E.K., 2005. "Evaluating livestock manures for biogas production: a GIS based method," Renewable Energy, Elsevier, vol. 30(8), pages 1161-1176.
    2. Prasad, S. & Singh, Anoop & Joshi, H.C., 2007. "Ethanol as an alternative fuel from agricultural, industrial and urban residues," Resources, Conservation & Recycling, Elsevier, vol. 50(1), pages 1-39.
    3. Kaparaju, Prasad & Rintala, Jukka, 2005. "Anaerobic co-digestion of potato tuber and its industrial by-products with pig manure," Resources, Conservation & Recycling, Elsevier, vol. 43(2), pages 175-188.
    4. Jongkwan Park & Kyung Hwa Cho & Mayzonee Ligaray & Mi-Jin Choi, 2019. "Organic Matter Composition of Manure and Its Potential Impact on Plant Growth," Sustainability, MDPI, vol. 11(8), pages 1-12, April.
    5. Liebrand, Carolyn Betts & Ling, K. Charles, 2009. "Cooperative Approaches for Implementation of Dairy Manure Digesters," Research Reports 280105, United States Department of Agriculture, Rural Development.
    6. Rao, P. Venkateswara & Baral, Saroj S. & Dey, Ranjan & Mutnuri, Srikanth, 2010. "Biogas generation potential by anaerobic digestion for sustainable energy development in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 2086-2094, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ji, Ling & Liang, Xiaolin & Xie, Yulei & Huang, Guohe & Wang, Bing, 2021. "Optimal design and sensitivity analysis of the stand-alone hybrid energy system with PV and biomass-CHP for remote villages," Energy, Elsevier, vol. 225(C).
    2. Periyasamy Elaiyaraju & Nagarajan Partha, 2012. "Biogas Production from Sago (Tapioca) Wastewater Using Anaerobic Batch Reactor," Energy & Environment, , vol. 23(4), pages 631-645, June.
    3. Sohoo, Ihsanullah & Ritzkowski, Marco & Heerenklage, Jörn & Kuchta, Kerstin, 2021. "Biochemical methane potential assessment of municipal solid waste generated in Asian cities: A case study of Karachi, Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    4. Jiseok Hong & Changwon Chae & Hyunjoong Kim & Hyeokjun Kwon & Jisu Kim & Ijung Kim, 2023. "Investigation to Enhance Solid Fuel Quality in Torrefaction of Cow Manure," Energies, MDPI, vol. 16(11), pages 1-13, June.
    5. Soha, Tamás & Papp, Luca & Csontos, Csaba & Munkácsy, Béla, 2021. "The importance of high crop residue demand on biogas plant site selection, scaling and feedstock allocation – A regional scale concept in a Hungarian study area," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    6. Surendra K Pradhan & Olufunke Cofie & Josiane Nikiema & Helvi Heinonen-Tanski, 2019. "Fecal Sludge Derived Products as Fertilizer for Lettuce Cultivation in Urban Agriculture," Sustainability, MDPI, vol. 11(24), pages 1-15, December.
    7. Samaneh Bahrololoum & Mojtaba Mahmood Molaei Kermani & Farzaneh Koohzadi, 2022. "Ecopreneurs and agricultural waste management," Journal of Global Entrepreneurship Research, Springer;UNESCO Chair in Entrepreneurship, vol. 12(1), pages 47-51, December.
    8. Deng, Yanfei & Xu, Jiuping & Liu, Ying & Mancl, Karen, 2014. "Biogas as a sustainable energy source in China: Regional development strategy application and decision making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 294-303.
    9. Ricardo Situmeang & Jana Mazancová & Hynek Roubík, 2022. "Technological, Economic, Social and Environmental Barriers to Adoption of Small-Scale Biogas Plants: Case of Indonesia," Energies, MDPI, vol. 15(14), pages 1-16, July.
    10. Bidart, Christian & Fröhling, Magnus & Schultmann, Frank, 2014. "Electricity and substitute natural gas generation from the conversion of wastewater treatment plant sludge," Applied Energy, Elsevier, vol. 113(C), pages 404-413.
    11. Höhn, J. & Lehtonen, E. & Rasi, S. & Rintala, J., 2014. "A Geographical Information System (GIS) based methodology for determination of potential biomasses and sites for biogas plants in southern Finland," Applied Energy, Elsevier, vol. 113(C), pages 1-10.
    12. Zalengera, Collen & Blanchard, Richard E. & Eames, Philip C. & Juma, Alnord M. & Chitawo, Maxon L. & Gondwe, Kondwani T., 2014. "Overview of the Malawi energy situation and A PESTLE analysis for sustainable development of renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 335-347.
    13. Jun Hou & Weifeng Zhang & Pei Wang & Zhengxia Dou & Liwei Gao & David Styles, 2017. "Greenhouse Gas Mitigation of Rural Household Biogas Systems in China: A Life Cycle Assessment," Energies, MDPI, vol. 10(2), pages 1-14, February.
    14. Shubham Dilip Sarode & Deepak Kumar & Divya Mathias & David McNeill & Prasad Kaparaju, 2023. "Anaerobic Digestion of Spoiled Maize, Lucerne and Barley Silage Mixture with and without Cow Manure: Methane Yields and Kinetic Studies," Energies, MDPI, vol. 16(17), pages 1-20, August.
    15. Oniszk-Popławska, Anna & Matyka, Mariusz & Ryńska, Elżbieta Dagny, 2014. "Evaluation of a long-term potential for the development of agricultural biogas plants: A case study for the Lubelskie Province, Poland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 329-349.
    16. Singh, Rhythm, 2018. "Energy sufficiency aspirations of India and the role of renewable resources: Scenarios for future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2783-2795.
    17. Gómez, Antonio & Zubizarreta, Javier & Rodrigues, Marcos & Dopazo, César & Fueyo, Norberto, 2010. "Potential and cost of electricity generation from human and animal waste in Spain," Renewable Energy, Elsevier, vol. 35(2), pages 498-505.
    18. Angelis-Dimakis, Athanasios & Biberacher, Markus & Dominguez, Javier & Fiorese, Giulia & Gadocha, Sabine & Gnansounou, Edgard & Guariso, Giorgio & Kartalidis, Avraam & Panichelli, Luis & Pinedo, Irene, 2011. "Methods and tools to evaluate the availability of renewable energy sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1182-1200, February.
    19. Calvert, K. & Pearce, J.M. & Mabee, W.E., 2013. "Toward renewable energy geo-information infrastructures: Applications of GIScience and remote sensing that build institutional capacity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 416-429.
    20. Yasar, Abdullah & Nazir, Saba & Rasheed, Rizwan & Tabinda, Amtul Bari & Nazar, Masooma, 2017. "Economic review of different designs of biogas plants at household level in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 221-229.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6159-:d:644294. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.