IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i18p5948-d638881.html
   My bibliography  Save this article

Influence of Selected Substrate Dosage on the Process of Biogas Installation Start-Up in Real Conditions

Author

Listed:
  • Katarzyna Ignatowicz

    (Faculty of Civil Engineering and Environmental Sciences, Białystok University of Technology, 15-351 Białystok, Poland)

  • Jacek Piekarski

    (Faculty of Civil Engineering, Environmental and Geodetic Sciences, Koszalin University of Technology, 75-453 Koszalin, Poland)

  • Paweł Kogut

    (Regional Waste Recovery Facility in Sianów, 76-004 Sianów, Poland)

Abstract

This paper presents an analysis of selected parameters of biogas, formed as a result of methane fermentation, during the start-up of a biogas installation, using water, liquid manure, corn silage and inoculated sludge as substrates. Moreover, the dependencies between the type and amount of the supplied substrate and the obtained parameters of biogas and fermentation mass are presented and explained. During 59 days after the start of the biogas plant operation, the methane content increased to a maximum of about 62%. Finally, after about 80 days, the methane content stabilized at a constant level of about 55%. CO 2 content increased from about 6% (day 32) to about 46% (day 84), with a clear linear correlation between carbon dioxide and methane content. Oxygen content decreased from about 18% (day 32) to about 0.3% (day 84) as the resulting gases displaced air from the reactor, and there was also a linear correlation between oxygen and methane content. The hydrogen sulfide content decreased from about 76 ppm (day 32) to about 0 ppm (day 47), after which, in a clear power correlation to the methane content, it maximally increased to 890 ppm (day 61). However, for the sake of safe engine operation, the desulfurization plant was started on day 63, which resulted in a H 2 S concentration below 50 ppm on day 74 of the experiment. The final hydrogen sulfide content was 9 ppm on day 84 of the biogas plant start-up.

Suggested Citation

  • Katarzyna Ignatowicz & Jacek Piekarski & Paweł Kogut, 2021. "Influence of Selected Substrate Dosage on the Process of Biogas Installation Start-Up in Real Conditions," Energies, MDPI, vol. 14(18), pages 1-11, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5948-:d:638881
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/18/5948/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/18/5948/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Heerenklage, J. & Rechtenbach, D. & Atamaniuk, I. & Alassali, A. & Raga, R. & Koch, K. & Kuchta, K., 2019. "Development of a method to produce standardised and storable inocula for biomethane potential tests – Preliminary steps," Renewable Energy, Elsevier, vol. 143(C), pages 753-761.
    2. Abdullah Nsair & Senem Onen Cinar & Ayah Alassali & Hani Abu Qdais & Kerstin Kuchta, 2020. "Operational Parameters of Biogas Plants: A Review and Evaluation Study," Energies, MDPI, vol. 13(15), pages 1-27, July.
    3. Radosław Żyłka & Wojciech Dąbrowski & Paweł Malinowski & Beata Karolinczak, 2020. "Modeling of Electric Energy Consumption during Dairy Wastewater Treatment Plant Operation," Energies, MDPI, vol. 13(15), pages 1-14, July.
    4. Muhammad Arif Fikri Hamzah & Jamaliah Md Jahim & Peer Mohamed Abdul & Ahmad Jaril Asis, 2019. "Investigation of Temperature Effect on Start-Up Operation from Anaerobic Digestion of Acidified Palm Oil Mill Effluent," Energies, MDPI, vol. 12(13), pages 1-16, June.
    5. Zhang, Cunsheng & Su, Haijia & Baeyens, Jan & Tan, Tianwei, 2014. "Reviewing the anaerobic digestion of food waste for biogas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 383-392.
    6. Janina Piekutin & Monika Puchlik & Michał Haczykowski & Katarzyna Dyczewska, 2021. "The Efficiency of the Biogas Plant Operation Depending on the Substrate Used," Energies, MDPI, vol. 14(11), pages 1-12, May.
    7. Nandor Csikos & Malte Schwanebeck & Michael Kuhwald & Peter Szilassi & Rainer Duttmann, 2019. "Density of Biogas Power Plants as An Indicator of Bioenergy Generated Transformation of Agricultural Landscapes," Sustainability, MDPI, vol. 11(9), pages 1-23, April.
    8. Appels, Lise & Lauwers, Joost & Degrève, Jan & Helsen, Lieve & Lievens, Bart & Willems, Kris & Van Impe, Jan & Dewil, Raf, 2011. "Anaerobic digestion in global bio-energy production: Potential and research challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4295-4301.
    9. Velásquez Piñas, Jean Agustin & Venturini, Osvaldo José & Silva Lora, Electo Eduardo & del Olmo, Oscar Almazan & Calle Roalcaba, Orly Denisse, 2019. "An economic holistic feasibility assessment of centralized and decentralized biogas plants with mono-digestion and co-digestion systems," Renewable Energy, Elsevier, vol. 139(C), pages 40-51.
    10. Andreas Lemmer & Hans-Joachim Naegele & Jana Sondermann, 2013. "How Efficient are Agitators in Biogas Digesters? Determination of the Efficiency of Submersible Motor Mixers and Incline Agitators by Measuring Nutrient Distribution in Full-Scale Agricultural Biogas ," Energies, MDPI, vol. 6(12), pages 1-19, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Katarzyna Ignatowicz & Gabriel Filipczak & Barbara Dybek & Grzegorz Wałowski, 2023. "Biogas Production Depending on the Substrate Used: A Review and Evaluation Study—European Examples," Energies, MDPI, vol. 16(2), pages 1-17, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Katarzyna Ignatowicz & Gabriel Filipczak & Barbara Dybek & Grzegorz Wałowski, 2023. "Biogas Production Depending on the Substrate Used: A Review and Evaluation Study—European Examples," Energies, MDPI, vol. 16(2), pages 1-17, January.
    2. Abdullah Nsair & Senem Onen Cinar & Ayah Alassali & Hani Abu Qdais & Kerstin Kuchta, 2020. "Operational Parameters of Biogas Plants: A Review and Evaluation Study," Energies, MDPI, vol. 13(15), pages 1-27, July.
    3. Janina Piekutin & Monika Puchlik & Michał Haczykowski & Katarzyna Dyczewska, 2021. "The Efficiency of the Biogas Plant Operation Depending on the Substrate Used," Energies, MDPI, vol. 14(11), pages 1-12, May.
    4. Awasthi, Mukesh Kumar & Ferreira, Jorge A. & Sirohi, Ranjna & Sarsaiya, Surendra & Khoshnevisan, Benyamin & Baladi, Samin & Sindhu, Raveendran & Binod, Parameswaran & Pandey, Ashok & Juneja, Ankita & , 2021. "A critical review on the development stage of biorefinery systems towards the management of apple processing-derived waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    5. Ganzoury, Mohamed A. & Allam, Nageh K., 2015. "Impact of nanotechnology on biogas production: A mini-review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1392-1404.
    6. Di Maria, Francesco & Sisani, Federico & Contini, Stefano, 2018. "Are EU waste-to-energy technologies effective for exploiting the energy in bio-waste?," Applied Energy, Elsevier, vol. 230(C), pages 1557-1572.
    7. Chiappero, Marco & Norouzi, Omid & Hu, Mingyu & Demichelis, Francesca & Berruti, Franco & Di Maria, Francesco & Mašek, Ondřej & Fiore, Silvia, 2020. "Review of biochar role as additive in anaerobic digestion processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    8. Dalke, Rachel & Demro, Delaney & Khalid, Yusra & Wu, Haoran & Urgun-Demirtas, Meltem, 2021. "Current status of anaerobic digestion of food waste in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    9. Bipasyana Dhungana & Sunil Prasad Lohani & Michael Marsolek, 2022. "Anaerobic Co-Digestion of Food Waste with Livestock Manure at Ambient Temperature: A Biogas Based Circular Economy and Sustainable Development Goals," Sustainability, MDPI, vol. 14(6), pages 1-16, March.
    10. Adam Wąs & Piotr Sulewski & Vitaliy Krupin & Nazariy Popadynets & Agata Malak-Rawlikowska & Magdalena Szymańska & Iryna Skorokhod & Marcin Wysokiński, 2020. "The Potential of Agricultural Biogas Production in Ukraine—Impact on GHG Emissions and Energy Production," Energies, MDPI, vol. 13(21), pages 1-20, November.
    11. Abhinav Choudhury & Stephanie Lansing, 2019. "Methane and Hydrogen Sulfide Production from Co-Digestion of Gummy Waste with a Food Waste, Grease Waste, and Dairy Manure Mixture," Energies, MDPI, vol. 12(23), pages 1-12, November.
    12. Senghor, A. & Dioh, R.M.N. & Müller, C. & Youm, I., 2017. "Cereal crops for biogas production: A review of possible impact of elevated CO2," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 548-554.
    13. Yermek Abilmazhinov & Kapan Shakerkhan & Vladimir Meshechkin & Yerzhan Shayakhmetov & Nurzhan Nurgaliyev & Anuarbek Suychinov, 2023. "Mathematical Modeling for Evaluating the Sustainability of Biogas Generation through Anaerobic Digestion of Livestock Waste," Sustainability, MDPI, vol. 15(7), pages 1-14, March.
    14. Li, Yangyang & Jin, Yiying & Li, Hailong & Borrion, Aiduan & Yu, Zhixin & Li, Jinhui, 2018. "Kinetic studies on organic degradation and its impacts on improving methane production during anaerobic digestion of food waste," Applied Energy, Elsevier, vol. 213(C), pages 136-147.
    15. Edwards, Joel & Othman, Maazuza & Burn, Stewart, 2015. "A review of policy drivers and barriers for the use of anaerobic digestion in Europe, the United States and Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 815-828.
    16. Gahyun Baek & Jaai Kim & Jinsu Kim & Changsoo Lee, 2018. "Role and Potential of Direct Interspecies Electron Transfer in Anaerobic Digestion," Energies, MDPI, vol. 11(1), pages 1-18, January.
    17. Safieddin Ardebili, Seyed Mohammad, 2020. "Green electricity generation potential from biogas produced by anaerobic digestion of farm animal waste and agriculture residues in Iran," Renewable Energy, Elsevier, vol. 154(C), pages 29-37.
    18. A. Sinan Akturk & Goksel N. Demirer, 2020. "Improved Food Waste Stabilization and Valorization by Anaerobic Digestion Through Supplementation of Conductive Materials and Trace Elements," Sustainability, MDPI, vol. 12(12), pages 1-11, June.
    19. Zhang, Jingxin & Hu, Qiang & Qu, Yiyuan & Dai, Yanjun & He, Yiliang & Wang, Chi-Hwa & Tong, Yen Wah, 2020. "Integrating food waste sorting system with anaerobic digestion and gasification for hydrogen and methane co-production," Applied Energy, Elsevier, vol. 257(C).
    20. Chenxi Pang & Xi Luo & Bing Rong & Xuebiao Nie & Zhengyu Jin & Xue Xia, 2022. "Carbon Emission Accounting and the Carbon Neutralization Model for a Typical Wastewater Treatment Plant in China," IJERPH, MDPI, vol. 20(1), pages 1-15, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5948-:d:638881. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.