IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i18p5918-d637984.html
   My bibliography  Save this article

Deflagration Characteristics of N 2 -Diluted CH 4 -N 2 O Mixtures in the Course of the Incipient Stage of Flame Propagation

Author

Listed:
  • Maria Mitu

    (“Ilie Murgulescu” Institute of Physical Chemistry, Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania)

  • Codina Movileanu

    (“Ilie Murgulescu” Institute of Physical Chemistry, Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania)

  • Venera Giurcan

    (“Ilie Murgulescu” Institute of Physical Chemistry, Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania)

Abstract

In this study, experimental measurements in a spherical combustion bomb were performed in order to investigate the flame propagation in N 2 -diluted CH 4 -N 2 O mixtures with stoichiometric equivalence ratio, at several initial pressures (0.5–1.75 bar) and ambient initial temperatures. Methane was chosen as a test-fuel, since it is the main component of natural gas, a fuel often used as a substitute to gasoline in engines with internal combustion and industrial plants. The method approached in this study is based on a simple examination of the cubic law of pressure rise during the early (incipient) period of flame propagation. The incipient stage defined by a pressure rise equal or smaller than the initial pressure, was divided into short time intervals. The burnt mass fractions (obtained using three different Equations) and flame radii at various moments of the flame propagation in the course of the incipient stage were calculated. The cubic law coefficients and corresponding laminar burning velocities at considered time intervals were also reported.

Suggested Citation

  • Maria Mitu & Codina Movileanu & Venera Giurcan, 2021. "Deflagration Characteristics of N 2 -Diluted CH 4 -N 2 O Mixtures in the Course of the Incipient Stage of Flame Propagation," Energies, MDPI, vol. 14(18), pages 1-16, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5918-:d:637984
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/18/5918/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/18/5918/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mehra, Roopesh Kumar & Duan, Hao & Juknelevičius, Romualdas & Ma, Fanhua & Li, Junyin, 2017. "Progress in hydrogen enriched compressed natural gas (HCNG) internal combustion engines - A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1458-1498.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hai, Tao & Hussein Kadir, Dler & Ghanbari, Afshin, 2023. "Modeling the emission characteristics of the hydrogen-enriched natural gas engines by multi-output least-squares support vector regression: Comprehensive statistical and operating analyses," Energy, Elsevier, vol. 276(C).
    2. Moon, Seokyoon & Lee, Yunseok & Seo, Dongju & Lee, Seungin & Hong, Sujin & Ahn, Yun-Ho & Park, Youngjune, 2021. "Critical hydrogen concentration of hydrogen-natural gas blends in clathrate hydrates for blue hydrogen storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    3. Stephan Karmann & Stefan Eicheldinger & Maximilian Prager & Malte Jaensch & Georg Wachtmeister, 2023. "Optical and Thermodynamic Investigations of a Methane- and Hydrogen-Blend-Fueled Large-Bore Engine Using a Fisheye Optical System," Energies, MDPI, vol. 16(4), pages 1-26, February.
    4. Zareei, Javad & Rohani, Abbas & Mazari, Farhad & Mikkhailova, Maria Vladimirovna, 2021. "Numerical investigation of the effect of two-step injection (direct and port injection) of hydrogen blending and natural gas on engine performance and exhaust gas emissions," Energy, Elsevier, vol. 231(C).
    5. Qiu, Songgang & Gao, Yuan & Rinker, Garrett & Yanaga, Koji, 2019. "Development of an advanced free-piston Stirling engine for micro combined heating and power application," Applied Energy, Elsevier, vol. 235(C), pages 987-1000.
    6. Qin, Yu & Wu, Jing & Xiao, Benyi & Cong, Ming & Hojo, Toshimasa & Cheng, Jun & Li, Yu-You, 2019. "Strategy of adjusting recirculation ratio for biohythane production via recirculated temperature-phased anaerobic digestion of food waste," Energy, Elsevier, vol. 179(C), pages 1235-1245.
    7. Chen, Zhanming & Zhang, Tiancong & Wang, Xiaochen & Chen, Hao & Geng, Limin & Zhang, Teng, 2021. "A comparative study of combustion performance and emissions of dual-fuel engines fueled with natural gas/methanol and natural gas/gasoline," Energy, Elsevier, vol. 237(C).
    8. Bum Youl Park & Ki-Hyung Lee & Jungsoo Park, 2020. "Conceptual Approach on Feasible Hydrogen Contents for Retrofit of CNG to HCNG under Heavy-Duty Spark Ignition Engine at Low-to-Middle Speed Ranges," Energies, MDPI, vol. 13(15), pages 1-16, July.
    9. Mehra, Roopesh Kumar & Duan, Hao & Luo, Sijie & Rao, Anas & Ma, Fanhua, 2018. "Experimental and artificial neural network (ANN) study of hydrogen enriched compressed natural gas (HCNG) engine under various ignition timings and excess air ratios," Applied Energy, Elsevier, vol. 228(C), pages 736-754.
    10. Bilgili, Levent, 2023. "A systematic review on the acceptance of alternative marine fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    11. Jena, Priyaranjan & Raj, Reetu & Tirkey, Jeewan Vachan, 2023. "Thermodynamic performance study and RSM based optimization of SI engine using sewage sludge producer gas blend with methane," Energy, Elsevier, vol. 273(C).
    12. Ralf Peters & Janos Lucian Breuer & Maximilian Decker & Thomas Grube & Martin Robinius & Remzi Can Samsun & Detlef Stolten, 2021. "Future Power Train Solutions for Long-Haul Trucks," Sustainability, MDPI, vol. 13(4), pages 1-57, February.
    13. Talebian, Hoda & Herrera, Omar E. & Tran, Martino & Mérida, Walter, 2018. "Electrification of road freight transport: Policy implications in British Columbia," Energy Policy, Elsevier, vol. 115(C), pages 109-118.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5918-:d:637984. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.