IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i17p5441-d627011.html
   My bibliography  Save this article

A Multi-Criteria Decision Process for EV Charging Stations’ Deployment: Findings from Greece

Author

Listed:
  • Leonidas Anthopoulos

    (Department of Business Administration, Geopolis Campus, University of Thessaly, Larissa Ringroad, 41500 Larissa, Greece)

  • Polytimi Kolovou

    (School of Science and Technology, MSc in Engineering Management, Hellenic Open University, 18 Aristotelous Side Road, 26335 Patras, Greece)

Abstract

Electro-mobility (EV) is an emerging transportation method, whose charging infrastructure development concerns a key-factor for its growth. EV charging infrastructure has not grown yet in Greece, regardless of the ambitious national targets that have been grounded for 2030 towards a climate-neutral mobility. This study introduces a multi-criteria decision-making (MCDM) framework for EV charging infrastructure deployment and operation, which respects both the economic and the technical aspects for public charging stations. The analytic hierarchy process (AHP) was followed for the MCDM framework’s definition, which used criteria that were in the corresponding literature and performed with interviews by experts from the EV growing market in Greece. The results show that the installation and operation of public EV charging stations, located in private spaces to ensure their protection against vandalism, within the urban areas is the preferred deployment approach. Moreover, this article tests a market model for the EV charging infrastructure ownership and operation. Findings show that the incentive for investment in EV charging infrastructure market in Greece, is driven by the direct investments of limited vendors, while it is not economically oriented, but it focuses on sustainability and environmental protection.

Suggested Citation

  • Leonidas Anthopoulos & Polytimi Kolovou, 2021. "A Multi-Criteria Decision Process for EV Charging Stations’ Deployment: Findings from Greece," Energies, MDPI, vol. 14(17), pages 1-16, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:17:p:5441-:d:627011
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/17/5441/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/17/5441/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Madina, Carlos & Zamora, Inmaculada & Zabala, Eduardo, 2016. "Methodology for assessing electric vehicle charging infrastructure business models," Energy Policy, Elsevier, vol. 89(C), pages 284-293.
    2. Makena Coffman & Paul Bernstein & Sherilyn Wee, 2017. "Electric vehicles revisited: a review of factors that affect adoption," Transport Reviews, Taylor & Francis Journals, vol. 37(1), pages 79-93, January.
    3. Schroeder, Andreas & Traber, Thure, 2012. "The economics of fast charging infrastructure for electric vehicles," Energy Policy, Elsevier, vol. 43(C), pages 136-144.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michel Noussan & Matteo Jarre, 2021. "Assessing Commuting Energy and Emissions Savings through Remote Working and Carpooling: Lessons from an Italian Region," Energies, MDPI, vol. 14(21), pages 1-19, November.
    2. Panagiotis Skaloumpakas & Evangelos Spiliotis & Elissaios Sarmas & Alexios Lekidis & George Stravodimos & Dimitris Sarigiannis & Ioanna Makarouni & Vangelis Marinakis & John Psarras, 2022. "A Multi-Criteria Approach for Optimizing the Placement of Electric Vehicle Charging Stations in Highways," Energies, MDPI, vol. 15(24), pages 1-13, December.
    3. Oluwasola O. Ademulegun & Paul MacArtain & Bukola Oni & Neil J. Hewitt, 2022. "Multi-Stage Multi-Criteria Decision Analysis for Siting Electric Vehicle Charging Stations within and across Border Regions," Energies, MDPI, vol. 15(24), pages 1-28, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Neaimeh, Myriam & Salisbury, Shawn D. & Hill, Graeme A. & Blythe, Philip T. & Scoffield, Don R. & Francfort, James E., 2017. "Analysing the usage and evidencing the importance of fast chargers for the adoption of battery electric vehicles," Energy Policy, Elsevier, vol. 108(C), pages 474-486.
    2. LaMonaca, Sarah & Ryan, Lisa, 2022. "The state of play in electric vehicle charging services – A review of infrastructure provision, players, and policies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    3. Stergios Statharas & Yannis Moysoglou & Pelopidas Siskos & Pantelis Capros, 2021. "Simulating the Evolution of Business Models for Electricity Recharging Infrastructure Development by 2030: A Case Study for Greece," Energies, MDPI, vol. 14(9), pages 1-24, April.
    4. Kim, Hyunjung & Kim, Dae-Wook & Kim, Man-Keun, 2022. "Economics of charging infrastructure for electric vehicles in Korea," Energy Policy, Elsevier, vol. 164(C).
    5. Makena Coffman & Paul Bernstein & Sherilyn Wee, 2017. "Electric vehicles revisited: a review of factors that affect adoption," Transport Reviews, Taylor & Francis Journals, vol. 37(1), pages 79-93, January.
    6. Gu, Huaying & Liu, Zhixue & Qing, Qiankai, 2017. "Optimal electric vehicle production strategy under subsidy and battery recycling," Energy Policy, Elsevier, vol. 109(C), pages 579-589.
    7. Baumgarte, Felix & Kaiser, Matthias & Keller, Robert, 2021. "Policy support measures for widespread expansion of fast charging infrastructure for electric vehicles," Energy Policy, Elsevier, vol. 156(C).
    8. Schulz, Felix & Rode, Johannes, 2022. "Public charging infrastructure and electric vehicles in Norway," Energy Policy, Elsevier, vol. 160(C).
    9. Zhu, Lijing & Zhang, Qi & Lu, Huihui & Li, Hailong & Li, Yan & McLellan, Benjamin & Pan, Xunzhang, 2017. "Study on crowdfunding’s promoting effect on the expansion of electric vehicle charging piles based on game theory analysis," Applied Energy, Elsevier, vol. 196(C), pages 238-248.
    10. Serradilla, Javier & Wardle, Josey & Blythe, Phil & Gibbon, Jane, 2017. "An evidence-based approach for investment in rapid-charging infrastructure," Energy Policy, Elsevier, vol. 106(C), pages 514-524.
    11. Zhang, Qi & Li, Hailong & Zhu, Lijing & Campana, Pietro Elia & Lu, Huihui & Wallin, Fredrik & Sun, Qie, 2018. "Factors influencing the economics of public charging infrastructures for EV – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 500-509.
    12. Muratori, Matteo & Kontou, Eleftheria & Eichman, Joshua, 2019. "Electricity rates for electric vehicle direct current fast charging in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    13. Anamarija Falkoni & Antun Pfeifer & Goran Krajačić, 2020. "Vehicle-to-Grid in Standard and Fast Electric Vehicle Charging: Comparison of Renewable Energy Source Utilization and Charging Costs," Energies, MDPI, vol. 13(6), pages 1-22, March.
    14. Xiaoli Sun & Zhengguo Li & Xiaolin Wang & Chengjiang Li, 2019. "Technology Development of Electric Vehicles: A Review," Energies, MDPI, vol. 13(1), pages 1-29, December.
    15. Shubham Gupta & Raghav Khanna & Pranay Kohli & Sarthak Agnihotri & Umang Soni & M. Asjad, 2023. "Risk evaluation of electric vehicle charging infrastructure using Fuzzy AHP – a case study in India," Operations Management Research, Springer, vol. 16(1), pages 245-258, March.
    16. Motoaki, Yutaka & Shirk, Matthew G., 2017. "Consumer behavioral adaption in EV fast charging through pricing," Energy Policy, Elsevier, vol. 108(C), pages 178-183.
    17. José M. Cansino & Antonio Sánchez-Braza & Teresa Sanz-Díaz, 2018. "Policy Instruments to Promote Electro-Mobility in the EU28: A Comprehensive Review," Sustainability, MDPI, vol. 10(7), pages 1-27, July.
    18. Tong Zhang, Paul J. Burke, and Qi Wang, 2024. "Effectiveness of electric vehicle subsidies in China: A three-dimensional panel study," Departmental Working Papers 2024-1, The Australian National University, Arndt-Corden Department of Economics.
    19. Jan Pekárek, 2017. "A Model of Charging Service Demand for the Czech Republic," Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Mendel University Press, vol. 65(5), pages 1741-1750.
    20. Jia, Wenjian & Jiang, Zhiqiu & Wang, Qian & Xu, Bin & Xiao, Mei, 2023. "Preferences for zero-emission vehicle attributes: Comparing early adopters with mainstream consumers in California," Transport Policy, Elsevier, vol. 135(C), pages 21-32.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:17:p:5441-:d:627011. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.