IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i13p4041-d588405.html
   My bibliography  Save this article

MPC Based Energy Management System for Hosting Capacity of PVs and Customer Load with EV in Stand-Alone Microgrids

Author

Listed:
  • Kyung-Sang Ryu

    (Electric Power System Research Team, Jeju Global Research Center (JGRC), Korea Institute of Energy Research (KIER), Jeju-si 63357, Korea)

  • Dae-Jin Kim

    (Electric Power System Research Team, Jeju Global Research Center (JGRC), Korea Institute of Energy Research (KIER), Jeju-si 63357, Korea)

  • Heesang Ko

    (Electric Power System Research Team, Jeju Global Research Center (JGRC), Korea Institute of Energy Research (KIER), Jeju-si 63357, Korea)

  • Chang-Jin Boo

    (Department of Electrical Engineering, Jeju International University, Jeju-si 63309, Korea)

  • Jongrae Kim

    (School of Mechanical Engineering, University of Leeds, Leeds LS29JT, UK)

  • Young-Gyu Jin

    (Department of Electrical Engineering, Jeju National University, Jeju-si 63243, Korea)

  • Ho-Chan Kim

    (Department of Electrical Engineering, Jeju National University, Jeju-si 63243, Korea)

Abstract

This paper presents the improvements of the hosting capacity of photovoltaics (PVs) and electric vehicles (EVs) in a stand-alone microgrid (MG) with an energy storage system (ESS) by consider-ing a model predictive control (MPC) based energy management system. The system is configured as an MG, including PVs, an ESS, a diesel generator (DG), and several loads with EVs. The DG is controlled to operate at rated power and the MPC algorithm is used in a stand-alone MG, which supplies the energy demanded for several loads with EVs. The hosting capacity of the load in-cluding the EV and PVs can be expanded through the ESS to the terminal node of the microgrid. In this case, the PVs and the load can be connected in excess of the capacity of the diesel genera-tor, and each bus in the feeder complies with the voltage range required by the grid. The effec-tiveness of the proposed algorithm to resolve the hosting capacity is demonstrated by numerical simulations.

Suggested Citation

  • Kyung-Sang Ryu & Dae-Jin Kim & Heesang Ko & Chang-Jin Boo & Jongrae Kim & Young-Gyu Jin & Ho-Chan Kim, 2021. "MPC Based Energy Management System for Hosting Capacity of PVs and Customer Load with EV in Stand-Alone Microgrids," Energies, MDPI, vol. 14(13), pages 1-20, July.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:13:p:4041-:d:588405
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/13/4041/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/13/4041/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Park, Minsun & Barrett, Mark & Gallo Cassarino, Tiziano, 2019. "Assessment of future renewable energy scenarios in South Korea based on costs, emissions and weather-driven hourly simulation," Renewable Energy, Elsevier, vol. 143(C), pages 1388-1396.
    2. Kyung-Sang Ryu & Dae-Jin Kim & Yang-Hyun Nam & Heesang Ko & Byungki Kim & Ho-Chan Kim, 2019. "An Innovative Operation Strategy of ESS for Capacity Expansion of Renewable Energy and Customer Load with Electric Vehicle Chargers in Low Voltage Distribution Systems," Energies, MDPI, vol. 12(24), pages 1-22, December.
    3. Ahmed Belila & Mohamed Benbouzid & El-Madjid Berkouk & Yassine Amirat, 2018. "On Energy Management Control of a PV-Diesel-ESS Based Microgrid in a Stand-Alone Context," Energies, MDPI, vol. 11(8), pages 1-23, August.
    4. Byungki Kim & Yang-Hyun Nam & Heesang Ko & Chul-Ho Park & Ho-Chan Kim & Kyung-Sang Ryu & Dae-Jin Kim, 2019. "Novel Voltage Control Method of the Primary Feeder by the Energy Storage System and Step Voltage Regulator," Energies, MDPI, vol. 12(17), pages 1-18, August.
    5. Zhenya Ji & Xueliang Huang & Changfu Xu & Houtao Sun, 2016. "Accelerated Model Predictive Control for Electric Vehicle Integrated Microgrid Energy Management: A Hybrid Robust and Stochastic Approach," Energies, MDPI, vol. 9(11), pages 1-18, November.
    6. Ghasemi, Ahmad & Enayatzare, Mehdi, 2018. "Optimal energy management of a renewable-based isolated microgrid with pumped-storage unit and demand response," Renewable Energy, Elsevier, vol. 123(C), pages 460-474.
    7. L. Alvarado-Barrios & A. Rodríguez del Nozal & A. Tapia & J. L. Martínez-Ramos & D. G. Reina, 2019. "An Evolutionary Computational Approach for the Problem of Unit Commitment and Economic Dispatch in Microgrids under Several Operation Modes," Energies, MDPI, vol. 12(11), pages 1-23, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daud Mustafa Minhas & Josef Meiers & Georg Frey, 2022. "Electric Vehicle Battery Storage Concentric Intelligent Home Energy Management System Using Real Life Data Sets," Energies, MDPI, vol. 15(5), pages 1-29, February.
    2. Romain Mannini & Julien Eynard & Stéphane Grieu, 2022. "A Survey of Recent Advances in the Smart Management of Microgrids and Networked Microgrids," Energies, MDPI, vol. 15(19), pages 1-37, September.
    3. Nor Liza Tumeran & Siti Hajar Yusoff & Teddy Surya Gunawan & Mohd Shahrin Abu Hanifah & Suriza Ahmad Zabidi & Bernardi Pranggono & Muhammad Sharir Fathullah Mohd Yunus & Siti Nadiah Mohd Sapihie & Asm, 2023. "Model Predictive Control Based Energy Management System Literature Assessment for RES Integration," Energies, MDPI, vol. 16(8), pages 1-27, April.
    4. Amrutha Raju Battula & Sandeep Vuddanti & Surender Reddy Salkuti, 2021. "Review of Energy Management System Approaches in Microgrids," Energies, MDPI, vol. 14(17), pages 1-32, September.
    5. Maciej Ławryńczuk & Piotr M. Marusak & Patryk Chaber & Dawid Seredyński, 2022. "Initialisation of Optimisation Solvers for Nonlinear Model Predictive Control: Classical vs. Hybrid Methods," Energies, MDPI, vol. 15(7), pages 1-21, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kyung-Sang Ryu & Dae-Jin Kim & Yang-Hyun Nam & Heesang Ko & Byungki Kim & Ho-Chan Kim, 2019. "An Innovative Operation Strategy of ESS for Capacity Expansion of Renewable Energy and Customer Load with Electric Vehicle Chargers in Low Voltage Distribution Systems," Energies, MDPI, vol. 12(24), pages 1-22, December.
    2. Chih-Ta Tsai & Teketay Mulu Beza & Wei-Bin Wu & Cheng-Chien Kuo, 2019. "Optimal Configuration with Capacity Analysis of a Hybrid Renewable Energy and Storage System for an Island Application," Energies, MDPI, vol. 13(1), pages 1-28, December.
    3. Singh, Bharat & Kumar, Ashwani, 2023. "Optimal energy management and feasibility analysis of hybrid renewable energy sources with BESS and impact of electric vehicle load with demand response program," Energy, Elsevier, vol. 278(PA).
    4. Tan, Kang Miao & Padmanaban, Sanjeevikumar & Yong, Jia Ying & Ramachandaramurthy, Vigna K., 2019. "A multi-control vehicle-to-grid charger with bi-directional active and reactive power capabilities for power grid support," Energy, Elsevier, vol. 171(C), pages 1150-1163.
    5. Yanyue Wang & Guohua Fang, 2022. "Joint Operation Modes and Economic Analysis of Nuclear Power and Pumped Storage Plants under Different Power Market Environments," Sustainability, MDPI, vol. 14(15), pages 1-17, July.
    6. Nguyen, Hai Tra & Safder, Usman & Nhu Nguyen, X.Q. & Yoo, ChangKyoo, 2020. "Multi-objective decision-making and optimal sizing of a hybrid renewable energy system to meet the dynamic energy demands of a wastewater treatment plant," Energy, Elsevier, vol. 191(C).
    7. Manish Kumar Singla & Jyoti Gupta & Mohammed H. Alsharif & Abu Jahid, 2023. "Optimizing Integration of Fuel Cell Technology in Renewable Energy-Based Microgrids for Sustainable and Cost-Effective Energy," Energies, MDPI, vol. 16(11), pages 1-18, June.
    8. Guangyi Wu & Xiangxin Shao & Hong Jiang & Shaoxin Chen & Yibing Zhou & Hongyang Xu, 2020. "Control Strategy of the Pumped Storage Unit to Deal with the Fluctuation of Wind and Photovoltaic Power in Microgrid," Energies, MDPI, vol. 13(2), pages 1-23, January.
    9. Zia, Muhammad Fahad & Nasir, Mashood & Elbouchikhi, Elhoussin & Benbouzid, Mohamed & Vasquez, Juan C. & Guerrero, Josep M., 2022. "Energy management system for a hybrid PV-Wind-Tidal-Battery-based islanded DC microgrid: Modeling and experimental validation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    10. Manzano, J.M. & Salvador, J.R. & Romaine, J.B. & Alvarado-Barrios, L., 2022. "Economic predictive control for isolated microgrids based on real world demand/renewable energy data and forecast errors," Renewable Energy, Elsevier, vol. 194(C), pages 647-658.
    11. Ifaei, Pouya & Tayerani Charmchi, Amir Saman & Loy-Benitez, Jorge & Yang, Rebecca Jing & Yoo, ChangKyoo, 2022. "A data-driven analytical roadmap to a sustainable 2030 in South Korea based on optimal renewable microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    12. Gallo Cassarino, Tiziano & Barrett, Mark, 2022. "Meeting UK heat demands in zero emission renewable energy systems using storage and interconnectors," Applied Energy, Elsevier, vol. 306(PB).
    13. Lee, Boreum & Lim, Dongjun & Lee, Hyunjun & Byun, Manhee & Lim, Hankwon, 2021. "Techno-economic analysis of H2 energy storage system based on renewable energy certificate," Renewable Energy, Elsevier, vol. 167(C), pages 91-98.
    14. Kocaman, Ayse Selin & Ozyoruk, Emin & Taneja, Shantanu & Modi, Vijay, 2020. "A stochastic framework to evaluate the impact of agricultural load flexibility on the sizing of renewable energy systems," Renewable Energy, Elsevier, vol. 152(C), pages 1067-1078.
    15. Md Masud Rana & Mohamed Atef & Md Rasel Sarkar & Moslem Uddin & GM Shafiullah, 2022. "A Review on Peak Load Shaving in Microgrid—Potential Benefits, Challenges, and Future Trend," Energies, MDPI, vol. 15(6), pages 1-17, March.
    16. Javed, Muhammad Shahzad & Ma, Tao & Jurasz, Jakub & Amin, Muhammad Yasir, 2020. "Solar and wind power generation systems with pumped hydro storage: Review and future perspectives," Renewable Energy, Elsevier, vol. 148(C), pages 176-192.
    17. Mohseni, Soheil & Brent, Alan C. & Kelly, Scott & Browne, Will N., 2022. "Demand response-integrated investment and operational planning of renewable and sustainable energy systems considering forecast uncertainties: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    18. Seshu Kumar, R. & Phani Raghav, L. & Koteswara Raju, D. & Singh, Arvind R., 2021. "Impact of multiple demand side management programs on the optimal operation of grid-connected microgrids," Applied Energy, Elsevier, vol. 301(C).
    19. Makbul A.M. Ramli & H.R.E.H. Bouchekara & Abdulsalam S. Alghamdi, 2019. "Efficient Energy Management in a Microgrid with Intermittent Renewable Energy and Storage Sources," Sustainability, MDPI, vol. 11(14), pages 1-28, July.
    20. Stefano Rinaldi & Marco Pasetti & Emiliano Sisinni & Federico Bonafini & Paolo Ferrari & Mattia Rizzi & Alessandra Flammini, 2018. "On the Mobile Communication Requirements for the Demand-Side Management of Electric Vehicles," Energies, MDPI, vol. 11(5), pages 1-27, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:13:p:4041-:d:588405. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.